精英家教网 > 高中数学 > 题目详情

如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.

(Ⅰ) 证明EF//平面A1CD;
(Ⅱ) 证明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.

(Ⅰ) 见解析(Ⅱ) 见解析(Ⅲ)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知四边形为梯形, ,四边形为矩形,且平面平面,点的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,多面体中,四边形是边长为的正方形,平面垂直于平面,且.
(Ⅰ)求证:
(Ⅱ)若分别为棱的中点,求证:∥平面
(Ⅲ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.

(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.

(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(I)求证
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,都是等边三角形.

(Ⅰ)证明:
(Ⅱ)求二面角A-PD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,设顶点在底面上的射影为

(Ⅰ)求证:
(Ⅱ)设点在棱上,且,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.

(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

同步练习册答案