精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{4x-6,x<2}\\{{x}^{2}-2ax,x≥2}\end{array}\right.$是R上的增函数,则实数a的取值范围是(-∞,$\frac{1}{2}$].

分析 由条件利用函数的单调性的性质可得$\left\{\begin{array}{l}{a≤2}\\{4-4a≥8-6}\end{array}\right.$,由此求得a的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{4x-6,x<2}\\{{x}^{2}-2ax,x≥2}\end{array}\right.$是R上的增函数,
∴$\left\{\begin{array}{l}{a≤2}\\{4-4a≥8-6}\end{array}\right.$,∴a≤$\frac{1}{2}$,
故答案为:$({-∞,\frac{1}{2}}]$.

点评 本题主要考查函数的单调性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如果直线l1:4ax+y+2=0与直线l2:(1-3a)x+ay-2=0平行,那么直线l2在y轴上的截距为(  )
A.8B.-8C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式ax2+bx+c>0的解集为(-2,1),则不等式cx2-bx+a<0的解集是(-∞,-1)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“lnx<1”是“x<e”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知|$\overrightarrow{a}$|=$\sqrt{10}$,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{{5\sqrt{30}}}{2}$,且($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=-15,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.用合适的符号填空:
(1)$\sqrt{5}$-$\sqrt{2}$∈R,$\sqrt{16}$∈Z    
(2)N?{0,1},Q?N
(3)-1∉{x|x2=-1},-2∉{x|x2-6x+8=0}
(4)∅={x|x2+3=0},∅?R
(5){2}?{x|x2-4=0},Z?R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)是定义在R上的奇函数,则一定有(  )
A.f(x)+f(-x)=0B.f(x)-f(-x)=0C.$\frac{f(-x)}{f(x)}=-1$D.$\frac{f(-x)}{f(x)}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设A,B在圆x2+y2=1上运动,且|AB|=$\sqrt{3}$,点P在直线3x+4y-12=0上运动,则|$\overrightarrow{PA}$+$\overrightarrow{PB}$|的最小值为(  )
A.3B.4C.$\frac{17}{5}$D.$\frac{19}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若△ABC在平面α外,它的三条边所在的直线分别交α于P、Q、R,则点Q∈直线PR(用符号表示它们的位置关系).

查看答案和解析>>

同步练习册答案