精英家教网 > 高中数学 > 题目详情

作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;
(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.

(1)(2)当米,另一边长为45米时花圃占地面积取得最大值1568平方米

解析试题分析:(1)由题知,又所以
(2).(当且仅当时取等号),此时另一边长为45米.
答:当米,另一边长为45米时花圃占地面积取得最大值1568平方米.
考点:函数应用题
点评:函数应用题的求解时首先根据题意描述的关系得到所求的两变量的函数关系式,同时要注意实际问题对定义域的限制,第二问求最值用到了均值不等式,还可用导数求最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈,都有f(x)-2mx≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某人2002年底花100万元买了一套住房,其中首付30万元,70万元采用商业贷款.贷款的月利率为5‰,按复利计算,每月等额还贷一次,10年还清,并从贷款后的次月开始还贷.
(1)这个人每月应还贷多少元?
(2)为了抑制高房价,国家出台“国五条”,要求卖房时按照差额的20%缴税.如果这个人现在将住房150万元卖出,并且差额税由卖房人承担,问:卖房人将获利约多少元?(参考数据:(1+0.005)120≈1.8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

江苏某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米,设防洪堤横断面的腰长为米,外周长(梯形的上底线段BC与两腰长的和)为米.

(1)求关于的函数关系式,并指出其定义域;
(2)要使防洪提的横断面的外周长不超过10.5米,则其腰长应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器。已知喷水器的喷水区域是半径为5m的圆。问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某产品在一个生产周期内的总产量为100t,平均分成若干批生产。设每批生产需要投入固定费用75元,而每批生产直接消耗的费用与产品数量x的平方成正比,已知每批生产10t时,直接消耗的费用为300元(不包括固定的费用)。
(1)若每批产品数量为20t,求此产品在一个生产周期的总费用(固定费用和直接消耗的费用)。
(2)设每批产品数量为xt,一个生产周期内的总费用y元,求y与x的函数关系式,并求
出y的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(Ⅰ)若在点处的切线与轴和直线围成的三角形面积等于,求的值;
(Ⅱ)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,是某地一个湖泊的两条互相垂直的湖堤,线段和曲线段分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥上某点分别修建与平行的栈桥,且以为边建一个跨越水面的三角形观光平台.建立如图2所示的直角坐标系,测得线段的方程是,曲线段的方程是,设点的坐标为,记.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)

(1)求的取值范围;
(2)试写出三角形观光平台面积关于的函数解析式,并求出该面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数.
(1)若,试判断函数零点个数;
(2)是否存在,使同时满足以下条件
①对任意,且
②对任意,都有。若存在,求出的值,若不存在,请说明理由。
(3)若对任意,试证明存在
使成立。

查看答案和解析>>

同步练习册答案