2£®ÒÑÖª¶¯Ô²N¾­¹ý¶¨µãF£¨0£¬$\frac{1}{2}$£©£¬ÇÒÓ붨ֱÏßy=-$\frac{1}{2}$ÏàÇУ¬¶¯Ô²Ô²ÐÄNµÄ¹ì¼£¼ÇΪÇúÏßC£¬µãQ£¨x0£¬y0£©ÊÇÇúÏßCÉÏÒ»µã
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl¹ýµãF£¨0£¬$\frac{1}{2}$£©ÇÒÓëÇúÏßC½»ÓÚ²»Í¬ÓÚQµÄÁ½µãA¡¢B£¬·Ö±ð¹ýA¡¢B¡¢Q¡¢ÇÒбÂÊ´æÔÚµÄÈýÌõÖ±Ïßl1£¬l2£¬l0¶¼ÓëÇúÏßCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬P¡¢D¡¢E·Ö±ðΪl1Óël2£¬l0Óël1£¬l0Óël2µÄ½»µã£¬Çó¡÷QABÓë¡÷PDEµÄÃæ»ýÖ®±È£®

·ÖÎö £¨1£©ÀûÓÃÖ±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢Å×ÎïÏߵ͍Òå¼´¿ÉµÃ³ö£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³ÌΪy=$kx+\frac{1}{2}$£®ÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃx2-2kx-1=0£®ÀûÓøùÓëϵÊýµÄ¹ØÏµÓëÏÒ³¤¹«Ê½¿ÉµÃ|AB|£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽÓëÈý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¿ÉµÃS¡÷QAB£¬ÀûÓÃÖ±ÏßÓëÅ×ÎïÏßÏàÇеÄÐÔÖʿɵÃÇÐÏßµÄбÂÊÓë·½³Ì£¬¿ÉµÃÖ±ÏߵĽ»µã£¬¼´¿ÉµÃ³ö¡÷PDEµÄÃæ»ý£®

½â´ð ½â£º£¨1£©ÉèÔ²ÐÄNµ½¶¨Ö±Ïßy=$-\frac{1}{2}$µÄ¾àÀëΪd£¬¶¯Ô²NµÄ°ë¾¶ÎªR£¬ÓÉÒÑÖªµÃd=R£¬
¼´|MF|ÓëµãNµ½¶¨Ö±Ïßy=$-\frac{1}{2}$µÄ¾àÀëÏàµÈ£¬ÓÉÅ×ÎïÏߵ͍ÒåµÃÇúÏßCµÄ·½³Ìx2=2y£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³ÌΪy=$kx+\frac{1}{2}$£®
ÓÉ$\left\{\begin{array}{l}{x^2}=2y\\ y=kx+\frac{1}{2}\end{array}\right.$£¬»¯Îªx2-2kx-1=0£®¡÷£¾0£¬
¡àx1+x2=2k£¬x1x2=-1£¬
|AB|=$\sqrt{1+{k^2}}|{x_1}-{x_2}|=2£¨1+{k^2}£©$£¬µãQµ½Ö±ÏßABµÄ¾àÀë${d_1}=\frac{{|k{x_0}-{y_0}+\frac{1}{2}|}}{{\sqrt{1+{k^2}}}}$£®
¡à${S_{¡÷QAB}}=\frac{1}{2}|AB|{d_1}=\sqrt{1+{k^2}}|k{x_0}-{y_0}+\frac{1}{2}|$£®
ÓÉ$\left\{\begin{array}{l}{x^2}=2y\\ y-\frac{x_0^2}{2}={k_0}£¨x-{x_0}£©\end{array}\right.$µÃx2-2k0x+2k0x0-x02=0£®ÓÉ¡÷=0£¬µÃk0=x0£®
¡àÖ±Ïßl0µÄ·½³ÌΪy=${x_0}x-\frac{x_0^2}{2}$£¬
ͬÀíÖ±Ïßl1µÄ·½³ÌΪy=${x_1}x-\frac{x_1^2}{2}$  ¢Ù£¬Ö±Ïßl2µÄ·½³ÌΪy=${x_2}x-\frac{x_2^2}{2}$  ¢Ú
ÓÉ¢Ù¢ÚµÃP$£¨\frac{{{x_1}+{x_2}}}{2}£¬\frac{{{x_1}{x_2}}}{2}£©$£¬¼´P$£¨k£¬-\frac{1}{2}£©$£®
ͬÀíµÃD$£¨\frac{{{x_1}+{x_0}}}{2}£¬\frac{{{x_1}{x_0}}}{2}£©$£¬E$£¨\frac{{x}_{2}+{x}_{0}}{2}£¬\frac{{x}_{2}{x}_{0}}{2}£©$£®
¡à|DE|=$\sqrt{{{£¨\frac{{{x_1}-{x_2}}}{2}£©}^2}+{{£¨\frac{{{x_1}{x_0}}}{2}-\frac{{{x_2}{x_0}}}{2}£©}^2}}=\frac{{\sqrt{1+x_0^2}}}{2}\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}=\sqrt{1+x_0^2}\sqrt{1+{k^2}}$£®
µãPµ½Ö±ÏßDE£ºy=${x_0}x-\frac{x_0^2}{2}$µÄ¾àÀë${d_2}=\frac{{|k{x_0}-{y_0}+\frac{1}{2}|}}{{\sqrt{1+x_0^2}}}$£®
¡à${S_{¡÷PDE}}=\frac{1}{2}|DE|{d_2}=\frac{1}{2}\sqrt{1+{k^2}}|k{x_0}-{y_0}+\frac{1}{2}|$£®
¡àS¡÷QAB£ºS¡÷PDE=2£®

µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏߵ͍Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÅ×ÎïÏßÏཻÏàÇÐÎÊÌ⡢бÂʼÆË㹫ʽ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Ô²µÄ¶¨Òå¼°ÆäÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x^2}£¬x£¾0\\ cosx£¬x¡Ü0\end{array}$£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©ÊÇżº¯ÊýB£®f£¨x£©ÊÇÔöº¯ÊýC£®f£¨x£©ÊÇÖÜÆÚº¯ÊýD£®f£¨x£©µÄÖµÓòΪ[-1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ö±Ïß$\left\{\begin{array}{l}x=2t-1\\ y=t+1\end{array}\right.$£¨tΪ²ÎÊý£© ±»Ô²x2+y2=9½ØµÃµÄÏÒ³¤µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{12}{5}$B£®$\frac{{12\sqrt{5}}}{5}$C£®$\frac{{9\sqrt{2}}}{5}$D£®$\frac{{9\sqrt{10}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÉèË«ÇúÏßÓëÍÖÔ²$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{36}$=1ÓÐÏàͬµÄ½¹µã£¬ÇÒÓëÍÖÔ²Ïཻ£¬Ò»¸ö½»µãAµÄ×Ý×ø±êΪ4£¬Çó£º
£¨1£©Ë«ÇúÏߵıê×¼·½³Ì£®
£¨2£©ÈôÖ±ÏßL¹ýA£¨-1£¬2£©£¬ÇÒÓëË«ÇúÏß½¥½üÏßy=kx£¨k£¾0£©´¹Ö±£¬ÇóÖ±ÏßLµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔڵȲîÊýÁÐ{an}ÖУ¬a1=2£¬d=3£¬Ôòa6=17£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÈçͼËùʾµÄÌúƬÓÉÁ½²¿·Ö×é³É£¬°ë¾¶Îª1µÄ°ëÔ²O¼°µÈÑüÖ±½Ç¡÷EFH£¬ÆäÖÐFE¡ÍFH£®ÏÖ½«ÌúƬ²Ã¼ô³É¾¡¿ÉÄÜ´óµÄÌÝÐÎÌúƬABCD£¨²»¼ÆËðºÄ£©£¬AD¡ÎBC£¬ÇÒµãA£¬BÔÚ»¡$\widehat{EF}$ÉÏ£®µãC£¬DÔÚб±ßEHÉÏ£®Éè¡ÏAOE=¦È£®
£¨1£©ÇóÌÝÐÎÌúƬABCDµÄÃæ»ýS¹ØÓڦȵĺ¯Êý¹ØÏµÊ½£»
£¨2£©ÊÔÈ·¶¨¦ÈµÄÖµ£¬Ê¹µÃÌÝÐÎÌúƬABCDµÄÃæ»ýS×î´ó£¬²¢Çó³ö×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪP£¨X=k£©=$\frac{1}{3}$£¬k=3£¬6£¬9£®ÔòD£¨X£©µÈÓÚ£¨¡¡¡¡£©
A£®6B£®9C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèËæ»ú±äÁ¿X¡«B£¨2£¬p£©£¬Y¡«B£¨4£¬p£©£¬ÈôP£¨X¡Ý1£©=$\frac{5}{9}$£¬ÔòP£¨Y¡Ý1£©Îª£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{16}{81}$C£®$\frac{65}{81}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚб¡÷ABCÖУ¬ÓÉA+B+C=¦Ð£¬µÃA+B=¦Ð-C£¬Ôòtan£¨A+B£©=tan£¨¦Ð-C£©£¬»¯¼òµÃtanA+tanB+tanC=tanAtanBtanC£®Àà±ÈÉÏÊö·½·¨£¬ÈôÕý½Ç¦Á£¬¦Â£¬¦ÃÂú×ã¦Á+¦Â+¦Ã=$\frac{¦Ð}{2}$£¬Ôòtan¦Á£¬tan¦Â£¬tan¦ÃÂú×ãµÄ½áÂÛΪtan¦Átan¦Â+tan¦Átan¦Ã+tan¦Âtan¦Ã=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸