·ÖÎö £¨1£©ÀûÓÃÖ±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢Å×ÎïÏߵ͍Òå¼´¿ÉµÃ³ö£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³ÌΪy=$kx+\frac{1}{2}$£®ÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃx2-2kx-1=0£®ÀûÓøùÓëϵÊýµÄ¹ØÏµÓëÏÒ³¤¹«Ê½¿ÉµÃ|AB|£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽÓëÈý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¿ÉµÃS¡÷QAB£¬ÀûÓÃÖ±ÏßÓëÅ×ÎïÏßÏàÇеÄÐÔÖʿɵÃÇÐÏßµÄбÂÊÓë·½³Ì£¬¿ÉµÃÖ±ÏߵĽ»µã£¬¼´¿ÉµÃ³ö¡÷PDEµÄÃæ»ý£®
½â´ð ½â£º£¨1£©ÉèÔ²ÐÄNµ½¶¨Ö±Ïßy=$-\frac{1}{2}$µÄ¾àÀëΪd£¬¶¯Ô²NµÄ°ë¾¶ÎªR£¬ÓÉÒÑÖªµÃd=R£¬
¼´|MF|ÓëµãNµ½¶¨Ö±Ïßy=$-\frac{1}{2}$µÄ¾àÀëÏàµÈ£¬ÓÉÅ×ÎïÏߵ͍ÒåµÃÇúÏßCµÄ·½³Ìx2=2y£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³ÌΪy=$kx+\frac{1}{2}$£®
ÓÉ$\left\{\begin{array}{l}{x^2}=2y\\ y=kx+\frac{1}{2}\end{array}\right.$£¬»¯Îªx2-2kx-1=0£®¡÷£¾0£¬
¡àx1+x2=2k£¬x1x2=-1£¬
|AB|=$\sqrt{1+{k^2}}|{x_1}-{x_2}|=2£¨1+{k^2}£©$£¬µãQµ½Ö±ÏßABµÄ¾àÀë${d_1}=\frac{{|k{x_0}-{y_0}+\frac{1}{2}|}}{{\sqrt{1+{k^2}}}}$£®
¡à${S_{¡÷QAB}}=\frac{1}{2}|AB|{d_1}=\sqrt{1+{k^2}}|k{x_0}-{y_0}+\frac{1}{2}|$£®
ÓÉ$\left\{\begin{array}{l}{x^2}=2y\\ y-\frac{x_0^2}{2}={k_0}£¨x-{x_0}£©\end{array}\right.$µÃx2-2k0x+2k0x0-x02=0£®ÓÉ¡÷=0£¬µÃk0=x0£®
¡àÖ±Ïßl0µÄ·½³ÌΪy=${x_0}x-\frac{x_0^2}{2}$£¬
ͬÀíÖ±Ïßl1µÄ·½³ÌΪy=${x_1}x-\frac{x_1^2}{2}$ ¢Ù£¬Ö±Ïßl2µÄ·½³ÌΪy=${x_2}x-\frac{x_2^2}{2}$ ¢Ú
ÓÉ¢Ù¢ÚµÃP$£¨\frac{{{x_1}+{x_2}}}{2}£¬\frac{{{x_1}{x_2}}}{2}£©$£¬¼´P$£¨k£¬-\frac{1}{2}£©$£®
ͬÀíµÃD$£¨\frac{{{x_1}+{x_0}}}{2}£¬\frac{{{x_1}{x_0}}}{2}£©$£¬E$£¨\frac{{x}_{2}+{x}_{0}}{2}£¬\frac{{x}_{2}{x}_{0}}{2}£©$£®
¡à|DE|=$\sqrt{{{£¨\frac{{{x_1}-{x_2}}}{2}£©}^2}+{{£¨\frac{{{x_1}{x_0}}}{2}-\frac{{{x_2}{x_0}}}{2}£©}^2}}=\frac{{\sqrt{1+x_0^2}}}{2}\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}=\sqrt{1+x_0^2}\sqrt{1+{k^2}}$£®
µãPµ½Ö±ÏßDE£ºy=${x_0}x-\frac{x_0^2}{2}$µÄ¾àÀë${d_2}=\frac{{|k{x_0}-{y_0}+\frac{1}{2}|}}{{\sqrt{1+x_0^2}}}$£®
¡à${S_{¡÷PDE}}=\frac{1}{2}|DE|{d_2}=\frac{1}{2}\sqrt{1+{k^2}}|k{x_0}-{y_0}+\frac{1}{2}|$£®
¡àS¡÷QAB£ºS¡÷PDE=2£®
µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏߵ͍Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÅ×ÎïÏßÏཻÏàÇÐÎÊÌ⡢бÂʼÆË㹫ʽ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Ô²µÄ¶¨Òå¼°ÆäÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©ÊÇżº¯Êý | B£® | f£¨x£©ÊÇÔöº¯Êý | C£® | f£¨x£©ÊÇÖÜÆÚº¯Êý | D£® | f£¨x£©µÄÖµÓòΪ[-1£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{12}{5}$ | B£® | $\frac{{12\sqrt{5}}}{5}$ | C£® | $\frac{{9\sqrt{2}}}{5}$ | D£® | $\frac{{9\sqrt{10}}}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6 | B£® | 9 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $\frac{16}{81}$ | C£® | $\frac{65}{81}$ | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com