精英家教网 > 高中数学 > 题目详情

【题目】如图所示,直角梯形中,,四边形为矩形,,平面平面.

1)求证:平面

2)在线段上是否存在点P,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.

【答案】1)见解析;(2)存在,

【解析】

1)证明平面,以D为原点,所在直线为x轴,过D作平行与的直线为y轴,所在直线为z轴,建立空间直角坐标系,平面的法向量,计算得到证明.

2)设,故,代入计算得到答案.

1)∵四边形为矩形,,因为平面平面

平面

由题意,以D为原点,所在直线为x轴,过D作平行与的直线为y轴,所在直线为z轴,建立空间直角坐标系.

设平面的法向量为,则

可求得平面的法向量,又,所以平面

2)设,则

设直线与平面所成角为

化简得,解得,或

时,

时,

综上:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.

1)完成下列列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;

生二孩

不生二孩

合计

头胎为女孩

60

头胎为男孩

合计

200

2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎是女孩的家庭户数的分布列及数学期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,经过点且斜率为的直线相交于两点,与轴相交于点.

1)若,且恰为线段的中点,求证:线段的垂直平分线经过定点;

2)若,设分别为 的左、右顶点,直线相交于点.当点异于时,是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,图中直棱柱的底面是菱形,其中.又点分别在棱上运动,且满足:.

1)求证:四点共面,并证明∥平面.

2)是否存在点使得二面角的余弦值为?如果存在,求出的长;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菱形中,平面

1)证明:直线平面

2)求二面角的正弦值;

3)线段上是否存在点使得直线与平面所成角的正弦值为?若存在,求;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线交于两点,是坐标原点,.

1)求线段中点的轨迹的方程;

2)设直线与曲线交于两点,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线C1a0b0)右焦点F2作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若 ,则双曲线C的渐近线方程为(

A.y=±xB.y=±xC.y=±2xD.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB两地相距100公里,两地政府为提升城市的抗疫能力,决定在AB之间选址P点建造储备仓库,共享民生物资,当点P在线段AB的中点C时,建造费用为2000万元,若点P在线段AC上(不含点A),则建造费用与PA之间的距离成反比,若点P在线段CB上(不含点B),则建造费用与PB之间的距离成反比,现假设PA之间的距离为x千米A地所需该物资每年的运输费用为万元,B地所需该物资每年的运输费用为万元,表示建造仓库费用,表示两地物资每年的运输总费用(单位:万元).

1)求函数的解析式;

2)若规划仓库使用的年限为,求的最小值,并解释其实际意义.

查看答案和解析>>

同步练习册答案