精英家教网 > 高中数学 > 题目详情
10.已知中心在坐标原点的椭圆C经过点A(2,3),且点F (2,0)为其右焦点.
(1)求椭圆C的方程和离心率e;
(2)若平行于OA的直线l与椭圆有公共点,求直线l在y轴上的截距的取值范围.

分析 (1)由题意c=2,设椭圆方程,将A代入椭圆方程,即可求得a的值,即可求得椭圆方程及离心率;
(2)设直线方程,代入椭圆方程,由韦达定理△≥0,即可求得b的取值范围.

解答 解:(1)由椭圆的焦点在x轴上,c=2,设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-4}=1$,
代入点A(2,3),$\frac{4}{{a}^{2}}+\frac{9}{{a}^{2}-4}=1$
解得:a2=16,则b2=12,离心率e=$\frac{c}{a}$=$\frac{1}{2}$
∴椭圆方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$,离心率$\frac{1}{2}$;
(2)设直线l的方程y=$\frac{3}{2}$x+b,
则$\left\{\begin{array}{l}{y=\frac{3}{2}x+b}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$,整理得:3x2+3bx+b2-12=0,
由△=(3b)2-12(b2-12)≥0,解得:-4$\sqrt{3}$≤b≤4$\sqrt{3}$,
直线l在y轴上的截距的取值范围[-4$\sqrt{3}$,4$\sqrt{3}$].

点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查判别式法的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若m、n表示直线,α、β表示平面,下列命题正确的是(  )
A.若m∥α,α∥β则m∥βB.m∥α,m∥n则n∥αC.若m∥α,n⊥α则m⊥nD.若m∥α,n?α则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a=2}|,|{\overrightarrow b}|=1$,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,则$|{\overrightarrow a+2\overrightarrow b}|$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.经过双曲线x2-$\frac{{y}^{2}}{3}$=1的左焦点F1作倾斜角为$\frac{π}{6}$的弦AB.求:
(1)线段AB的长;
(2)设F2为右焦点,求△F2AB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.直线l1过点M(-1,0),与抛物线y2=4x交于P1、P2两点,P是线段P1P2的中点,直线l2过P和抛物线的焦点F,设直线l1的斜率为k.
(1)将直线l2的斜率与直线l1的斜率之比表示为k的函数f(k);
(2)求出f(k)的定义域及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.西部大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,设F(-c,0)是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点,点P(-$\frac{{a}^{2}}{c}$,0)是x轴上的一点,点M,N为椭圆的左、右顶点,已知|MN|=8,且|PM|=2|MF|
(1)求椭圆的标准方程;
(2)过点P作直线l交椭圆于A,B两点,试判定直线AF,BF的斜率之和kAF+kBF是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A(1,0)、B(0,1),C(x,-1),若A,B,C三点共线,则线段AC的长等于(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,已知b=3,c=3$\sqrt{3}$,A=30°,则边a等于(  )
A.9B.3C.27D.3$\sqrt{3}$

查看答案和解析>>

同步练习册答案