分析 先根据交点横坐标求出最小正周期,进而可得w的值,再由当x=2π时函数取得最大值确定φ的值,最后根据正弦函数的性质可得到答案.
解答 解:∵函教f(x)=$\sqrt{{a}^{2}+1}$sin(ωx+φ)(ω>0)的图象
与直线y=$\frac{1}{2}\sqrt{{a^2}+1}$的三个相邻交点的横坐标分别是π,3π,7π,
∴当x=2π时函数取得最大值,当x=5π时函数取得最小值,T=6π,
且在区间[2π,5π]上单调递减,
所以原函数递减区间[6kπ+2π,6kπ+5π](k∈Z)
故答案:[6kπ+2π,6kπ+5π](k∈Z).
点评 本题考查了三角函数的图象及性质,数形结合思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 设p:f(x)=x3+2x2+mx+1是R上的单调增函数,$q:m≥\frac{4}{3}$,则p是q的必要不充分条件 | |
| B. | 若命题$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,则¬p:?x∈R,x2-x+1>0 | |
| C. | 奇函数f(x)定义域为R,且f(x-1)=-f(x),那么f(8)=0 | |
| D. | 命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(3)<f(-2)<f(1) | B. | f(1)<f(-2)<f(3) | C. | f(-2)<f(1)<f(3) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com