精英家教网 > 高中数学 > 题目详情
16.在f(x)=sinωx+acosωx的图象与直线y=$\frac{1}{2}\sqrt{{a^2}+1}$的交点中,三个相邻交点的横坐标分别为π,3π,7π,则f(x)的单调递减区间为[6kπ+2π,6kπ+5π](k∈Z).

分析 先根据交点横坐标求出最小正周期,进而可得w的值,再由当x=2π时函数取得最大值确定φ的值,最后根据正弦函数的性质可得到答案.

解答 解:∵函教f(x)=$\sqrt{{a}^{2}+1}$sin(ωx+φ)(ω>0)的图象
与直线y=$\frac{1}{2}\sqrt{{a^2}+1}$的三个相邻交点的横坐标分别是π,3π,7π,
∴当x=2π时函数取得最大值,当x=5π时函数取得最小值,T=6π,
且在区间[2π,5π]上单调递减,
所以原函数递减区间[6kπ+2π,6kπ+5π](k∈Z)
故答案:[6kπ+2π,6kπ+5π](k∈Z).

点评 本题考查了三角函数的图象及性质,数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.画出下列函数图象并由图象观察定义域和值域.
(1)y=|x+3|;
(2)y=|2x2-3|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{m}$=(2cosx,t)(t∈R),$\overrightarrow{n}$=(sinx-cosx,1),函数y=f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,将y=f(x)的图象向左平移$\frac{π}{8}$个单位长度后得到y=g(x)的图象且y=g(x)在区间[0,$\frac{π}{4}$]内的最大值为$\sqrt{2}$.
(1)求t的值及y=f(x)的最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,若$\sqrt{2}$g($\frac{A}{2}$-$\frac{π}{4}$)=-1,a=2,求BC边上的高的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{x}{x-1}$的图象是下列图象中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法错误的是(  )
A.设p:f(x)=x3+2x2+mx+1是R上的单调增函数,$q:m≥\frac{4}{3}$,则p是q的必要不充分条件
B.若命题$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,则¬p:?x∈R,x2-x+1>0
C.奇函数f(x)定义域为R,且f(x-1)=-f(x),那么f(8)=0
D.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一同学投篮每次命中的概率是$\frac{1}{2}$,该同学连续投蓝5次,每次投篮相互独立.
(1)求连续命中4次的概率;
(2)求恰好命中4次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.
(Ⅰ)若θ=$\frac{π}{2}$,且棱AB垂直于平面BCD,求四面体ABCD的体积;
(Ⅱ)当θ=$\frac{π}{2}$时,证明:四面体ABCD的体积为一定值;
(Ⅲ)求四面体ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点P(4,2)是直线l被椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$所截得的线段的中点,
(1)求直线l的方程
(2)求直线l被椭圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的函数f(x)满足:对任意的x1,x2∈R(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

同步练习册答案