精英家教网 > 高中数学 > 题目详情
7.设抛物线C:y2=8x的焦点为F,过F的直线与C相交于A,B两点,记点F到直线l:x=-2的距离为d,则有(  )
A.|AB|=2dB.|AB|≥2dC.|AB|≤2dD.|AB|<2d

分析 由抛物线方程求出F的坐标,得到F到准线l的距离d=4,设出过焦点的直线方程,和抛物线联立后利用根与系数的关系求出焦点弦的长度,然后核对四个选项得答案.

解答 解:如图,设A(x1,y1),B(x2,y2),
由抛物线W:y2=8x,得焦点为F(2,0),准线l:x=-2.
F到准线的距离d=4.
设直线AB的方程为x=ty+2,
联立抛物线方程,得y1+y2=8t.
x1+x2=t(y1+y2)+4=8t2+4≥4.
则|AB|=x1+x2+4≥8=2d.
故选:B.

点评 本题考查了抛物线的简单几何性质,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知一组数据6,7,8,9,m的平均数是8,则这组数据的方差是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设Sn为等差数列{an}的前n项和,且a1+a10-a5=6,则S11=(  )
A.55B.66C.110D.132

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2-1=0},B={-1,2,5},则A∩B={-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知直三棱柱ABC-A1B1C1的侧面ACC1A1是正方形,点O是侧面ACC1A1的中心,∠ACB=$\frac{π}{2}$,M是棱BC的中点.
(1)求证:OM∥平面ABB1A1
(2)求证:平面ABC1⊥平面A1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若曲线C1:y=ax3-6x2+12x与曲线C2:y=ex在x=1处的两条切线互相平行,则a的值为$\frac{e}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?x∈R,x2+2x+2>0”的否定是(  )
A.?x∈R,x2+2x+2≤0B.?x∈R,x2+2x+2≤0C.?x∈R,x2+2x+2<0D.?x∈R,x2+2x+2>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow a=(2,-1,x),\overrightarrow b=(3,2,-1)$,若$\overrightarrow a⊥\overrightarrow b$则实数x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,边长为2的菱形ABED与正三形DEC组成一等腰梯形ABCD,沿BD将△ABD所在的平面折起,使平面ABD⊥平面BDC.
(1)设F为平面ACD内的点,且EF∥平面ABD确定点F的位置;
(2)求DE与平面ACD所成角的正弦值.

查看答案和解析>>

同步练习册答案