精英家教网 > 高中数学 > 题目详情
16.已知$\overrightarrow a=(2,-1,x),\overrightarrow b=(3,2,-1)$,若$\overrightarrow a⊥\overrightarrow b$则实数x=4.

分析 利用向量垂直的性质求解.

解答 解:∵$\overrightarrow a=(2,-1,x),\overrightarrow b=(3,2,-1)$,$\overrightarrow a⊥\overrightarrow b$,
∴$\overrightarrow{a}•\overrightarrow{b}$=6-2-x=0,
解得x=4.
∴实数x的值为4.
故答案为:4.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设数列{an}的各项都是正数,且对任意n∈N*,都有4Sn=an2+2an,其中Sn为数列{an}的前n项和,则数列{an}的通项公式为an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设抛物线C:y2=8x的焦点为F,过F的直线与C相交于A,B两点,记点F到直线l:x=-2的距离为d,则有(  )
A.|AB|=2dB.|AB|≥2dC.|AB|≤2dD.|AB|<2d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知P是抛物线C:x2=4y上一动点,直线l:y=x-2.
(1)求点P到直线l的最小距离;
(2)当P到直线l的距离最小时,求以点P为圆心且与抛物线C准线相切的圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知正方体ABCD-A′B′C′D′,点E是A′C′的中点,点F是AE的三等分点,且$AF=\frac{1}{2}EF$,则$\overrightarrow{AF}$等于(  )
A.$\overrightarrow{AA′}$+$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$B.$\frac{1}{2}$$\overrightarrow{AA′}$+$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$C.$\frac{1}{2}$$\overrightarrow{AA′}$+$\frac{1}{6}$$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AD}$D.$\frac{1}{3}$$\overrightarrow{AA′}$+$\frac{1}{6}$$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知四棱锥P-ABCD的底面为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1.
(1)求证:平面PAD⊥平面PCD;
(2)求直线AC与直线PB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数$f(x)=6{cos^2}\frac{ωx}{2}+\sqrt{3}sinωx-3({ω>0})$在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若$f({x_0})=\frac{{8\sqrt{3}}}{5}$,且${x_0}∈({-\frac{10}{3},\frac{2}{3}})$,求f(x0+1)的值;
(3)若函数f(x)满足方程$f(x)=a({0<a<2\sqrt{3}})$,求在[-2,12]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≤0}\\{2x-y-1≥0}\\{x-2y-2≤0}\end{array}\right.$,则z=x+3y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象在y轴上的截距为1,在相邻两最值点(x0,2)(x0+$\frac{3}{2}$,-2)(x0>0)上分别取得最大值和最小值.
(1)求f(x)的解析式;
(2)求方程f(x)=a(1<a<2),在[0,9]内的所有实数根之和.

查看答案和解析>>

同步练习册答案