精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c在x=-
23
和x=1时都取得极值.
(1)求a,b的值;
(2)求f(x)在[-1,2]上的最大值和最小值(用含c的代数式表示);
(3)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
分析:(1)利用导数与极值之间的关系建立方程求解.(2)利用导数通过表格求函数的最大值和最小值.(3)不等式恒成立,实质是求f(x)在[-1,2]的最大值.
解答:解:(1)f′(x)=3x2+2ax+b      …1
因为函数f(x)在x=-
2
3
和x=1取到极值,即f′(-
2
3
)=0,f′(1)=0.
所以,f′(-
2
3
)=
12
9
-
4
3
a+b=0
,f′(1)=3+2a+b=0
解得 a=-
1
2
,b=-2        …3

(2)由(1)可得f(x)=x3-
1
2
x2-2x+c
x -1 (-1,-
2
3
-
2
3
(-
2
3
,1)
1 (1,2) 2
f'(x) + 0 - 0 +
f(x)
1
2
+c
递增 +c 递减 -
3
2
+c
递增 2+c
所以,在[-1,2]上  fmin(x)=f(1)=-
3
2
+c,fmax(x)=f(2)=2+c…7
(3)要使f(x)<c2在x∈[-1,2]恒成立,只需fmax(x)<c2,即2+c<c2
解得 c<-1或c>2     …10
点评:本题的考点是函数的极值与导数的关系,以及利用导数求函数的最大值和最小值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案