精英家教网 > 高中数学 > 题目详情
定义在(-∞,+∞)上的函数fk(x)=
f(x),f(x)≤k
k,f(x)>k
,其中k为正常数.若k=
1
2
,f(x)=2-|x|
,则函数fk(x)的递增区间是(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)D.(-∞,+∞)
由f(x)≤
1
2
得:2-|x|≤
1
2
,即(
1
2
)|x|≤
1
2

解得:x≤-1或x≥1.
∴函数fK(x)=
(
1
2
)x,x≥1
2x,x≤-1
1
2
,-1<x<1

由此可见,函数fK(x)在(-∞,-1)单调递增,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、定义在R上的函数f(x)最小正周期为5,且f(1)=1,则f(log264)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x∈(-
3
2
,0)时
,f(x)=2-x+1则f(8)=(  )
A、4
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的增函数,则不等式f(x)>f[8(x-2)]的解集是
{x|x<
16
7
}
{x|x<
16
7
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,满足f(-
3
2
+x)=f(
3
2
+x)
.当x∈(0,
3
2
)
时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在[-2013,2013]上的函数f(x)满足:对于任意的x1,x2∈[-2013,2013],有f(x1+x2)=f(x1)+f(x2)-2012,且x>0时,有f(x)>2012,f(x)的最大、小值分别为M、N,则M+N的值为(  )

查看答案和解析>>

同步练习册答案