【题目】已知椭圆过点,且离心率为.
()求椭圆的方程.
()已知双曲线的离心率是椭圆的离心率的倒数,其顶点为椭圆的焦点,求双曲线的方程.
()设直线与双曲线交于, 两点,过的直线与线段有公共点,求直线的倾斜角的取值范围.
科目:高中数学 来源: 题型:
【题目】已知动圆过定点且与定直线相切,动圆圆心的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)已知斜率为的直线交轴于点,且与曲线相切于点,设的中点为(其中为坐标原点).求证:直线的斜率为0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 为正三角形,平面底面,底面为梯形, , , , , ,点在棱上,且.
求证:(1)平面平面;
(2)求证: 平面;
(3)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+1)e2x , g(x)=aln(x+1)+ x2+(3﹣a)x+a(a∈R).
(1)当a=9,求函数y=g(x)的单调区间;
(2)若f(x)≥g(x)恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆C经过点A(1,3) ,B(4,2),且圆心在直线l:x-y-1=0上.
(1)求圆C的方程;
(2)设P是圆D:x2+y2+8x-2y+16=0上任意一点,过点P作圆C的两条切线PM,PN,M,N为切点,试求四边形PMCN面积S的最小值及对应的点P坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一块地皮,其中, 是直线段,曲线段是抛物线的一部分,且点是该抛物线的顶点, 所在的直线是该抛物线的对称轴.经测量, km, km, .现要从这块地皮中划一个矩形来建造草坪,其中点在曲线段上,点, 在直线段上,点在直线段上,设km,矩形草坪的面积为km2.
(1)求,并写出定义域;
(2)当为多少时,矩形草坪的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由 算得, .
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 = .
(1)求证: + = ;
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com