精英家教网 > 高中数学 > 题目详情

【题目】已知为常数).

1)当时,求函数的单调性;

2)当时,求证:

3)试讨论函数零点的个数.

【答案】1上单调递增,在上单调递减2见解析3见解析

【解析】试题分析:(1)将参数值代入得到函数表达式,求导研究导函数的正负即可;(2)由题意即证,当时, ,对函数求导研究单调性求最值即可;(3)直接对函数求导,研究函数的单调性,得到函数的变化趋势,结合图像讨论函数的零点个数。

解析:

1)解当时, ,所以),

时, ;当时,

上单调递增,在上单调递减.

(2)证明:记

由题意即证,当时,

),

,则

所以上恒成立,则上单调递减,

,即证.

3由题意, ).

①若,则,故上单调递增,

又因为,且

由零点存在性定理知, 上有且只有一个零点. 

②若,当 ,则上单调递增;

,则上单调递减,

所以, 上的极大值点,也是最大值点, .

(i)当,即 恒成立,则上无零点;

(ii)当,即 ,则上有一个零点;

(iii)当,即

而当时,有,理由如下:令),则

所以上单调递增, ,即. 

,由(2)知,而

上的单调性及零点存在性定理可知, 分别在上各有一个零点,即上有两个零点.

综上所述,当时, 上有一个零点;

时, 上有两个零点;

时, 上没有零点..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 两两垂直且相等,过的中点作平面,且分别交PB,PCM、N,交的延长线于

)求证: 平面

)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z,(m∈R,i是虚数单位).

(1)若z是纯虚数,求m的值;

(2)设z的共轭复数,复数+2z在复平面上对应的点在第一象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

)求椭圆的方程.

)已知双曲线的离心率是椭圆的离心率的倒数,其顶点为椭圆的焦点,求双曲线的方程.

)设直线与双曲线交于 两点,过的直线与线段有公共点,求直线的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:

喜爱

不喜爱

总计

男学生

60

80

女学生

总计

70

30

附:K2=

P(K2≥k0

0.100

0.050

0.010

k0

2.706

3.841

6.635


(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有X个男生去观看演出的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示是某条公共汽车路线收支差额y与乘客量x的图象(收支差额=车票收入—支出费用)由于目前本条线路在亏损,公司有关人员提出了两条建议:

建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格. 图中虚线表示调整前的状态,实线表示调整后的状态. 在上面四个图象中

A. ①反映了建议(),③反映了建议() B. ①反映了建议(),③反映了建议()

C. ②反映了建议(),④反映了建议() D. ④反映了建议(),②反映了建议()

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,短轴长为,点在椭圆上.

(1)求椭圆的标准方程;

(2)若斜率为的直线与椭圆交于 两点, 为弦中点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信支付诞生于微信红包,早期知识作为社交的一部分“发红包”而诞生的,在发红包之余才发现,原来微信支付不仅可以用来发红包,还可以用来支付,现在微信支付被越来越多的人们所接受,现从某市市民中随机抽取300为对是否使用微信支付进行调查,得到下列的列联表:

年轻人

非年轻人

总计

经常使用微信支付

165

225

不常使用微信支付

合计

90

300

根据表中数据,我们得到的统计学的结论是:由__________的把握认为“使用微信支付与年龄有关”。

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在定义域内为增函数,求实数的取值范围;

2)在(1)的条件下,若 ,求的极小值;

3)设 .若函数存在两个零点,且满足,问:函数处的切线能否平行于轴?若能,求出该切线方程,若不能,请说明理由.

查看答案和解析>>

同步练习册答案