精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数在定义域内为增函数,求实数的取值范围;

2)在(1)的条件下,若 ,求的极小值;

3)设 .若函数存在两个零点,且满足,问:函数处的切线能否平行于轴?若能,求出该切线方程,若不能,请说明理由.

【答案】12 3)不能

【解析】试题分析:(1)先根据题意写出:g(x)再求导数,由题意知,g′(x)≥0,x(0,+∞)恒成立,即n由此即可求得实数a的取值范围;
Ⅱ)由(Ⅰ)知,利用换元法令t=ex,则t[1,2],则h(t)=t3-3at,接下来利用导数研究此函数的单调性,从而得出h(x)的极小值;
Ⅲ)对于能否问题,可先假设能,即设F(x)在(x0,F(x0))的切线平行于x轴,其中F(x)=2lnx-x2-kx结合题意,列出方程组,证得函数在(0,1)上单调递增,最后出现矛盾,说明假设不成立,即切线不能否平行于x轴.

试题解析:

解:(Ⅰ

由题意,知恒成立,即

,当且仅当时等号成立.

,所以.

Ⅱ)由(Ⅰ)知,,则,则

,得(舍去),

①若,则单调递减;也单调递减;

②若,则单调递增. 也单调递增;

的极小值为

Ⅲ)设的切线平行于轴,其中

结合题意,有

①-②得,所以由④得

所以

⑤式变为

所以函数上单调递增,因此,,即

也就是,,此式与⑤矛盾.

所以处的切线不能平行于.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为常数).

1)当时,求函数的单调性;

2)当时,求证:

3)试讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,经过点的直线与椭圆相交于两点,已知的周长为

(1)求椭圆的方程;

(2)若,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 =
(1)求证: + =
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB是⊙O的直径,直线AF交⊙O于F(不与B重合),直线EC与⊙O相切于C,交AB于E,连接AC,且∠OAC=∠CAF,求证:

(1)AF⊥EC;
(2)若AE=5,AF=2,求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin2x的图象,只需把函数y=sin(2x﹣ )的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 中, 所对的边分别为,且.

(1)求角的大小;

(2)若 的中点,求的长.

【答案】(1);(2).

【解析】试题分析:(1)由已知,利用正弦定理可得a2b2c22b再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
2ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,ABD中,由余弦定理求得BD的值.

试题解析:

(1)因为asin A(bc)sin B(cb)·sin C

由正弦定理得a2(bc)b(cb)c

整理得a2b2c22bc

由余弦定理得cos A

因为A∈(0π)所以A.

(2)cos Bsin B

所以cos Ccos[π(AB)]=-cos(AB)=-=-

由正弦定理得b2

所以CDAC1

BCD由余弦定理得BD2()2122×1××13

所以BD.

型】解答
束】
21

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数给出下列四个命题:

①c = 0时,是奇函数;时,方程只有一个实根;

的图象关于点(0 , c)对称; ④方程至多3个实根.

其中正确的命题个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角A,B,C的对边分别为a,b,c,R表示的外接圆半径.

(Ⅰ)如图,在以O圆心、半径为2O中,BCBAO的弦,其中,求弦AB的长;

(Ⅱ)中,若是钝角,求证:;

(Ⅲ)给定三个正实数a、b、R,其中,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的不存在、存在一个或存在两个(全等的三角形算作同一个)?在存在的情况下,用a、b、R表示c.

查看答案和解析>>

同步练习册答案