精英家教网 > 高中数学 > 题目详情
(14分)如图,△ABC内接于圆O,AB是圆O的直径,
,设AE与平面ABC所成的角为,且,
四边形DCBE为平行四边形,DC平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD平面ADE;
(3)在CD上是否存在一点M,使得MO//平面ADE?证明你的结论.
(1)
(2)略
(3)略
解:(1)∵四边形DCBE为平行四边形 ∴
∵ DC平面ABC        ∴平面ABC
为AE与平面ABC所成的角,
--------------------2分
在Rt△ABE中,由,
------------3分
∵AB是圆O的直径 ∴

      ∴……………………………………………………4分
 ……………………………………5分
(2)证明:∵ DC平面ABC ,平面ABC  ∴.…………………6分
     ∴平面ADC. 
∵DE//BC  ∴平面ADC  …………………………………………8分
又∵平面ADE  ∴平面ACD平面…………………………9分
(3)在CD上存在点,使得MO∥平面,该点的中点.…… 10分  
证明如下:
如图,取的中点,连MO、MN、NO,

∵M、N、O分别为CD、BE、AB的中点,
∴.     …………………………………………………………11分
平面ADE,平面ADE,
 …………………………………………………………12分
同理可得NO//平面ADE.
,∴平面MNO//平面ADE.……………………………………13分
平面MNO,∴MO//平面ADE.……………… 14分(其它证法请参照给分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
(1)求证:BC⊥平面PAC;
(2)求二面角D-PC-A的大小的正切值;
(3)求点B到平面PCD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题共12分)如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G
(1)AE平面BCE
(2)AE//平面BFD
(3)锥C-BGF的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图所示,四棱锥中,是矩形,三角形PAD为等腰直角三角形,分别为的中点。
(1)求证:∥平面
(2)证明:平面平面
(3)求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知三棱锥中, 两两垂直,
,且 求三棱锥体积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。
(1)求证:AB1//面BDC1
(2)若AA1=3,求二面角C1—BD—C的余弦值;
(3)若在线段AB1上存在点P,使得CP面BDC1,试求AA1的长及点P的位置。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图,矩形平面分别是的中点,

(1)求证:直线直线
(2)若平面与平面所成的锐二面角为,能否确定使直线是异面直线的公垂线.若能确定,求出的值;若不能确定,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

由命题“RtABC中,两直角边分别为a,b,斜边上的高为h,则得”由此可类比出命题“若三棱锥S-ABC的三条侧棱SA,SB,SC两两垂直,长分别为a,b,c,底面ABC上的高为h,则得____________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列几何体中,一定是长方体的是( )
A.直平行六面体B.对角面为全等矩形的四棱柱
C.底面是矩形的直棱柱D.侧面是矩形的四棱柱

查看答案和解析>>

同步练习册答案