精英家教网 > 高中数学 > 题目详情
已知直线a∥平面α,直线b⊥平面α,求证:a⊥b.
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:设β为过a的平面,且α∩β=l.由a∥α,得a∥l.由b⊥l,得b⊥a.
解答: 证明:设β为过a的平面,且α∩β=l.
∵a∥α,∴a∥l.
∵直线b⊥平面α,l?α,
∴b⊥l,
∴b⊥a.
故a⊥b.
点评:本题考查直线与直线垂直的证明,是基础题,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y1=ln(1-x)定义域为A,函数y2=ex-1的值域为B,则A∩B是(  )
A、∅B、R
C、(0,1)D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-bx-
a
x
(a、b为常数),在x=1时取得极值.
(Ⅰ)求实数a-b的值;
(Ⅱ)当a=-2时,求函数f(x)的最小值;
(Ⅲ)当n∈N*时,试比较(
n
n+1
n(n+1)与(
1
e
n+2的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为[0,1]的函数f(x),如果同时满足以下三条:
①对任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.
(1)若函数f(x)为理想函数,求f(0)的值;
(2)判断函数g(x)=2x-1(x∈[0,1])是否为理想函数,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种商品,现在定价p元,每月卖出n件,设定价上涨x成,每月卖出数量减少y成,每月售货总金额变成现在的z倍.
(1)用x和y表示z;
(2)设x与y满足y=kx(0<k<1),利用k表示当每月售货总金额最大时x的值;
(3)若y=
2
3
x,求使每月售货总金额有所增加的x值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=-1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).
(1)求抛物线E的方程;
(2)若
AF
FB
+
DF
FC
=64,求直线l1、l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,
使得CN=BM,连AN,CM交于P点.求∠APM的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

棱台的上底面积为16,下底面积为64,求棱台被它的中截面分成的上、下两部分体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,O是BD1中点,A1C交平面AB1D1于M.则以下说法中:
(1)A1,M,O共线;
(2)A1,M,O,A共面;
(3)A,O,C,M共面;
(4)B,B1,O,M共面.
其中说法正确的是
 

查看答案和解析>>

同步练习册答案