精英家教网 > 高中数学 > 题目详情
如图所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,
使得CN=BM,连AN,CM交于P点.求∠APM的度数.
考点:相似三角形的性质
专题:立体几何
分析:可过A作AB的垂线,在其上截取AK=CN=MB,连KM,KC,得△KAM≌△MBC,进而由题中条件得出△KMC为等腰直角三角形,再证△AKC≌△CAN,得出∠KCA=∠NAC,即KC∥AN,进而可将∠APM转化为∠KCM求解.
解答: 解:如图,过A作AB的垂线,在其上截取AK=CN=MB,连KM,KC,则
因为AM=BC,AK=BM,∠KAM=∠B=90°,
所以△KAM≌△MBC,
所以KM=CM,∠AMK=∠MCB
因为∠CMB+∠MCB=90°,
所以∠CMB+∠AMK=90°
所以∠KMC=90°
所以△KMC为等腰直角三角形,∠MCK=45°
又因为∠KAM=∠B=90°,AK=CN,
所以AK∥CN,
所以四边形ANCK是平行四边形,
所以KC∥AN,
所以∠APM=∠KCM=45°.
点评:本题主要考查了全等三角形的判定及性质以及等腰直角三角形的性质等问题,能够通过作辅助线在图形之间建立联系,进而辅助解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过直线y=-1上一点M向抛物线x2=4y作切线,切点分别为A、B,则直线AB恒过定点(  )
A、(0,1)
B、(0,2)
C、(1,1)
D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

求棱长都为a的正四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a∥平面α,直线b⊥平面α,求证:a⊥b.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实系数三次多项式P(x)=x3+ax2+bx+c有三个非零实数根.求证:6a3+10(a2-2b) 
3
2
-12ab≥27c.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
1
2
x+sinx,x∈[0,2π]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是双曲线
x2
4
-y2=1的左右顶点,C,D是双曲线上关于x轴对称的两点,直线AC与BD的交点为E.
(1)求点E的轨迹W的方程;
(2)若W与x轴的正半轴,y轴的正半轴的交点分别为M,N,直线y=kx(k>0)与W的两个交点分别是P,Q(其中P是第一象限),求四边形MPNQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0且满足
2
x
+
8
y
=1,则x+y的最小值为
 

查看答案和解析>>

同步练习册答案