3£®ÒÔÏÂËĸö¹ØÓÚÔ²×¶ÇúÏßµÄÃüÌâÖУº
¢ÙË«ÇúÏß$\frac{x^2}{16}-\frac{y^2}{9}=1$ÓëÍÖÔ²$\frac{x^2}{49}+\frac{y^2}{24}=1$ÓÐÏàͬµÄ½¹µã£»
¢ÚÒÔÅ×ÎïÏߵĽ¹µãÏÒ£¨¹ý½¹µãµÄÖ±Ïß½ØÅ×ÎïÏßËùµÃµÄÏ߶Σ©ÎªÖ±¾¶µÄÔ²ÓëÅ×ÎïÏßµÄ×¼ÏßÊÇÏàÇеģ»
¢ÛÉèA¡¢BΪÁ½¸ö¶¨µã£¬kΪ³£Êý£¬Èô|PA|-|PB|=k£¬Ôò¶¯µãPµÄ¹ì¼£ÎªË«ÇúÏߣ»
¢Ü¹ý¶¨Ô²CÉÏÒ»µãA×÷Ô²µÄ¶¯ÏÒAB£¬OΪԭµã£¬Èô$\overrightarrow{OP}=\frac{1}{2}£¨\overrightarrow{OA}+\overrightarrow{OB}£©$Ôò¶¯µãPµÄ¹ì¼£ÎªÍÖÔ²£®ÆäÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

·ÖÎö ¶Ô4¸öÑ¡Ïî·Ö±ð½øÐÐÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º¢ÙË«ÇúÏß$\frac{x^2}{16}-\frac{y^2}{9}=1$µÄ½¹µã×ø±êΪ£¨¡À5£¬0£©£¬
ÍÖÔ²$\frac{x^2}{49}+\frac{y^2}{24}=1$µÄ½¹µã×ø±êΪ£¨¡À5£¬0£©£¬
ËùÒÔË«ÇúÏß$\frac{x^2}{16}-\frac{y^2}{9}=1$ÓëÍÖÔ²$\frac{x^2}{49}+\frac{y^2}{24}=1$ÓÐÏàͬµÄ½¹µã£¬ÕýÈ·£»
¢Ú²»·ÁÉèÅ×ÎïÏßΪ±ê×¼Å×ÎïÏߣºy2=2px £¨p£¾0 £©£¬¼´Å×ÎïÏßλÓÚYÖáµÄÓҲ࣬ÒÔXÖáΪ¶Ô³ÆÖᣮ
Éè¹ý½¹µãµÄÏÒΪPQ£¬PQµÄÖеãÊÇM£¬Mµ½×¼ÏߵľàÀëÊÇd£®
¶øPµ½×¼ÏߵľàÀëd1=|PF|£¬Qµ½×¼ÏߵľàÀëd2=|QF|£®
ÓÖMµ½×¼ÏߵľàÀëdÊÇÌÝÐεÄÖÐλÏߣ¬¹ÊÓÐd=$\frac{|PF|+|QF|}{2}$£¬
ÓÉÅ×ÎïÏߵ͍Òå¿ÉµÃ£º$\frac{|PF|+|QF|}{2}$=$\frac{|PQ|}{2}$=°ë¾¶£®
ËùÒÔÔ²ÐÄMµ½×¼ÏߵľàÀëµÈÓÚ°ë¾¶£¬
ËùÒÔÔ²Óë×¼ÏßÊÇÏàÇУ¬ÕýÈ·£®
¢ÛÆ½ÃæÄÚÓëÁ½¸ö¶¨µãF1£¬F2µÄ¾àÀëµÄ²îµÄ¾ø¶ÔÖµµÈÓÚ³£Êýk£¨k£¼|F1F2|£©µÄµãµÄ¹ì¼£½Ð×öË«ÇúÏߣ¬
µ±0£¼k£¼|AB|ʱÊÇË«ÇúÏßµÄÒ»Ö§£¬µ±k=|AB|ʱ£¬±íʾÉäÏߣ¬ËùÒÔ²»ÕýÈ·£»
¢ÜÉ趨ԲCµÄ·½³ÌΪx2+y2+Dx+Ey+F=0£¬µãA£¨m£¬n£©£¬P£¨x£¬y£©£¬
ÓÉ$\overrightarrow{OP}=\frac{1}{2}£¨\overrightarrow{OA}+\overrightarrow{OB}£©$Ôò¿ÉÖªPΪABµÄÖе㣬ÔòB£¨2x-m£¬2y-n£©£¬
ÒòΪABΪԲµÄ¶¯ÏÒ£¬ËùÒÔBÔÚÒÑÖªÔ²ÉÏ£¬
°ÑBµÄ×ø±ê´úÈëÔ²x2+y2+Dx+Ey+F=0µÃµ½PµÄ¹ì¼£ÈÔΪԲ£¬
µ±BÓëAÖØºÏʱAB²»ÊÇÏÒ£¬ËùÒÔµãA³ýÍ⣬ËùÒÔ²»ÕýÈ·£®
¹ÊÑ¡B£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÔ²×¶ÇúÏߵĹ²Í¬ÌØÕ÷£¬Í¬Ê±¿¼²éÁËÍÖÔ²ÓëË«ÇúÏßµÄÐÔÖÊ£¬¿¼²éµÄ֪ʶµã½Ï¶à£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª12£¼a£¼60£¬15£¼b£¼36£¬Çóa-b¼°$\frac{a}{b}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô²»µÈʽx2+2+|x3-2x|¡Ýax¶ÔÈÎÒâµÄx¡Ê[1£¬2]ºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§£¨¡¡¡¡£©
A£®a¡Ü4B£®a¡Ü5C£®a¡Ü2$\sqrt{2}$D£®a¡Ü1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®º¯Êýf£¨x£©=-x2+£¨3-2m£©x+2+m£¨0£¼m¡Ü1£©£®
£¨¢ñ£©Èôx¡Ê[0£¬m]£¬Ö¤Ã÷£ºf£¨x£©¡Ü$\frac{10}{3}$£»
£¨¢ò£©Çó|f£¨x£©|ÔÚ[-1£¬1]ÉϵÄ×î´óÖµg£¨m£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èô¹ØÓÚxµÄ·½³Ìlgx=5-2xµÄ½âx0¡Ê£¨k£¬k+1£©£¬k¡ÊZ£¬Ôòk=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÀëÐÄÂÊ$e=\frac{{\sqrt{2}}}{2}$£¬PΪÍÖÔ²EÉϵÄÈÎÒâÒ»µã£¨²»º¬³¤Öá¶Ëµã£©£¬ÇÒ¡÷PF1F2Ãæ»ýµÄ×î´óֵΪ1£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±x-y+m=0ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÇÒÏßABµÄÖе㲻ÔÚÔ²${x^2}+{y^2}=\frac{5}{9}$ÄÚ£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªf£¨x+1£©=x+2x2£¬Çóf£¨x£©=2x2-3x+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=1£¬ÇÒn•an+1=£¨n+2£©Sn£¬n¡ÊN*£®
£¨1£©ÇóÖ¤£ºÊýÁÐ$\left\{{\frac{S_n}{n}}\right\}$ΪµÈ±ÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{Sn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èôa£¾0£¬b£¾2£¬ÇÒa+b=3£¬ÔòʹµÃ$\frac{4}{a}$+$\frac{1}{b-2}$È¡µÃ×îСֵµÄʵÊýa=$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸