精英家教网 > 高中数学 > 题目详情
11.函数f(x)=-x2+(3-2m)x+2+m(0<m≤1).
(Ⅰ)若x∈[0,m],证明:f(x)≤$\frac{10}{3}$;
(Ⅱ)求|f(x)|在[-1,1]上的最大值g(m).

分析 (Ⅰ)求出二次函数的对称轴方程,由m的范围分类可得二次函数在[0,m]上的单调性,得到二次函数的最大值,由配方法证明f(x)≤$\frac{10}{3}$;
(Ⅱ)分0$<m≤\frac{1}{2}$和$\frac{1}{2}$<m≤1两种情况求出函数f(x)在[-1,1]上的最值,再由最值的绝对值的大小求得|f(x)|在[-1,1]上的最大值g(m).

解答 (Ⅰ)证明:∵0<m≤1,∴f(x)的对称轴x=$\frac{3-2m}{2}$∈[$\frac{1}{2}$,$\frac{3}{2}$),
①0<m≤$\frac{1}{2}$时,函数f(x)=-x2+(3-2m)x+2+m开口向下,在[0,m)函数是增函数,
∴f(x)≤f(m)=-m2+(3-2m)m+2+m=-3m2+4m+2=-3$(m-\frac{2}{3})^{2}+\frac{10}{3}$$≤\frac{10}{3}$;
②当$\frac{1}{2}<m≤1$时,f(x)max=f($\frac{3-2m}{2}$)=$\frac{-4(2+m)-(3-2m)^{2}}{-4}$=$\frac{4(m-1)^{2}+13}{4}$<$\frac{13}{4}$$<\frac{10}{3}$.
综上,f(x)≤$\frac{10}{3}$;
(Ⅱ)函数f(x)=-x2+(3-2m)x+2+m=-(x-$\frac{3-2m}{2}$)2+$\frac{4{m}^{2}-8m+17}{4}$,
若0$<m≤\frac{1}{2}$,则0<2m≤1,f(x)的对称轴x=$\frac{3-2m}{2}$∈[1,$\frac{3}{2}$),
则f(x)在[-1,1]上为增函数,
∵f(1)=4-m∈[$\frac{7}{2},4$),|f(-1)|=|3m-2|∈[$\frac{1}{2}$,2).
∴|f(1)|>|f(-1)|,
∴|f(x)|在[-1,1]上的最大值g(m)=f(1)=4-m;
若$\frac{1}{2}$<m≤1,则1<2m≤2,f(x)的对称轴x=$\frac{3-2m}{2}$∈($\frac{1}{2}$,1],
则f(x)在[-1,1]上先增后减,且最小值为f(-1)=3m-2,最大值为f($\frac{3-2m}{2}$)=m2-2m+$\frac{17}{4}$.
∵|f(-1)|=|3m-2|∈[0,1],f($\frac{3-2m}{2}$)=m2-2m+$\frac{17}{4}$=$(m-1)^{2}+\frac{13}{4}≥\frac{13}{4}$.
∴|f(x)|在[-1,1]上的最大值g(m)=f($\frac{3-2m}{2}$)=m2-2m+$\frac{17}{4}$.
综上,g(m)=$\left\{\begin{array}{l}{4-m,0<m≤\frac{1}{2}}\\{{m}^{2}-2m+\frac{17}{4},\frac{1}{2}<m≤1}\end{array}\right.$.

点评 本题考查二次函数的性质,考查了分类讨论的数学思想方法,正确的分类是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点E是△ABC所在平面内一点,且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,则$\frac{{S}_{△ABE}}{{S}_{△ABC}}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义在R上的奇函数,对任意两个不相等的正数x1,x2,都有$\frac{{{x_2}f({x_1})-{x_1}f({x_2})}}{{{x_1}-{x_2}}}$<0,记a=25f(0.22),b=f(1),c=-log53×f(log${\;}_{\frac{1}{3}}}$5),则(  )
A.c<b<aB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>b>1,若logab+logba=$\frac{10}{3}$,ab=ba,则由a,b,3b,b2,a-2b构成的包含元素最多的集合的子集个数是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)满足f(1)=1,且f(x+1)-f(x)=4x-2.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.命题p:函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x<0}\\{ln(x+1),x≥0}\end{array}\right.$且|f(x)|≥ax.q:函数g(x)为定义在R上的奇函数,当x≥0时,g(x)=$\frac{1}{2}$(|x-a2|+|x-2a2|-3a2),且?x∈R,f(x-1)≤f(x)恒成立.
(1)若p且q为真命题,求a的取值范围;
(2)若p或q为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以下四个关于圆锥曲线的命题中:
①双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;
③设A、B为两个定点,k为常数,若|PA|-|PB|=k,则动点P的轨迹为双曲线;
④过定圆C上一点A作圆的动弦AB,O为原点,若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$则动点P的轨迹为椭圆.其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn,若Sk=2,S3k=18,则S4k=(  )
A.24B.28C.32D.54

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在R上的函数 y=f(x) 对任意的x,y∈R,满足条件:f(x+y)=f(x)+f(y)-2,且当x>0时,f(x)>2
(1)求f(0)的值;
(2)证明:函数f(x)是R上的单调增函数;
(3)解不等式f(2t2-t-3)-2<0.

查看答案和解析>>

同步练习册答案