分析 (1)由题条件,利用待定系数法设出函数解析式的一般形式,代入利用恒等式知识可求;(2)由二次函数图象特点,函数在区间上不单调,应有其图象对称轴在区间内,构造不等式,解不等式即可.
解答 解:(1)由已知可设f(x)=ax2+bx+c,
∴f(1)=a+b+c=1①,
又f(x+1)-f(x)=2ax+a+b=4x-2,
∴$\left\{\begin{array}{l}{2a=4}\\{a+b=-2}\end{array}\right.$,解得:a=2,b=-4,
代入①式得c=3,
∴函数解析式为:f(x)=2x2-4x+3;
(2)由(1)可知,函数图象开口向上,对称轴为x=1,要使函数不单调,则2a<1<a+1,则$0<a<\frac{1}{2}$.
即a的范围是:$(0,\frac{1}{2})$.
点评 本题考查用待定系数法求函数解析式以及二次函数的单调性问题,属于基础题.
科目:高中数学 来源: 题型:解答题
| 付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
| 频数 | 35 | 25 | a | 10 | b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤4 | B. | a≤5 | C. | a≤2$\sqrt{2}$ | D. | a≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com