精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xOy中,圆C的方程为(x-2)2+(y-3)2=36,直线l:y=kx+5与圆C相交于A,B两点,M为弦AB上一动点,以M为圆心,4为半径的圆与圆C总有公共点,则实数k的最小值为(  )
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.0

分析 由题意,M为圆心,4为半径的圆与圆C总有公共点,直线l:y=kx+5,恒过点(0,5)与圆C必相交A,B两点,动点M为圆心坐标(x,kx+5),4为半径的圆与圆C总有公共点,以M为圆心,4为半径的圆与圆C总有公共点,圆C到M的距离d需满足:10≥d≥2,可得k的最小值.

解答 解:由题意:圆C的方程为(x-2)2+(y-3)2=36,
圆心为(2,3),半径r=6,直线l:y=kx+5
,恒过点(0,5)与圆C必相交A,B两点,
M为弦AB上一动点,以M为圆心,4为半径的圆与圆C总有公共点,
圆C到M的距离d需满足:d≥2,
即2≤$\frac{|2k-3+5|}{\sqrt{{k}^{2}+1}}$
解得:k≥0,
故得实数k的最小值为0.
故选D.

点评 本题主要考查直线和圆的位置关系的判断,根据直线和圆相切的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)的导函数f′(x),当x∈(0,$\frac{π}{2}$)时,f′(x)sin2x<f(x)(1+cos2x)成立,下列不等式一定成立的是(  )
A.$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)C.$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{6}$)D.f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点A(2,1),B(-2,3),C(0,1),则△ABC中,BC边上的中线长为$\sqrt{10}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}的前n项为Sn,且a1+a5=-14,S9=-27,则使得Sn取最小值时的n为(  )
A.1B.6C.7D.6或7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)画出函数f(x)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)满足f(1)=1,且f(x+1)-f(x)=4x-2.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设y=$\frac{1}{1-x}$的反函数是y=1-$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知下列选项,其中错误的是(  )
①过圆(x-1)2+(y-2)2=4外一点M(3,1),且与圆相切的直线方程为3x-4y-5=0;
②方程Ax2+By2=1(A>0,B>0)表示椭圆方程;
③平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线;
④方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1(mn>0)表示焦点在x轴上的双曲线.
A.①②③④B.①②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数f(x)=k•xa的图象过点(3,$\sqrt{3}$),则k+a=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案