| A. | $\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$) | B. | $\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$) | C. | $\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{6}$) | D. | f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{6}$) |
分析 本题依据已知导数的特称,构造新函数g(x)=$\frac{f(x)}{sinx}$,根据g(x)=$\frac{f(x)}{sinx}$单调性进行判定,
解答 解:∵x∈(0,$\frac{π}{2}$)时,f′(x)sin2x<f(x)(1+cos2x)成立,
⇒f′(x)2sinx•cosx<f(x)2sin2x 成立⇒f′(x)sinx-f(x)cosx<0成立.
∴令g(x)=$\frac{f(x)}{sinx}$,g′(x)=$\frac{f′(x)sinx-f(x)cosx}{si{n}^{2}x}<0$⇒g′(x)<0在(0,$\frac{π}{2}$)恒成立,
∴g(x)在(0,$\frac{π}{2}$)上是单调递减的,故($\frac{π}{4}$)$>g(\frac{π}{3})$⇒$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$).
故选B.
点评 本题考查了构造抽象函数,利用抽象函数的导数,处理函数不等式问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 405 | B. | 404 | C. | 407 | D. | 406 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,0) | B. | ($\frac{1}{2}$,1) | C. | (1,$\sqrt{2}$) | D. | (2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
| 频数 | 35 | 25 | a | 10 | b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -ln(e+1) | B. | -ln(4+e) | C. | -1 | D. | -ln(e+$\frac{1}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com