精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)的导函数f′(x),当x∈(0,$\frac{π}{2}$)时,f′(x)sin2x<f(x)(1+cos2x)成立,下列不等式一定成立的是(  )
A.$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)C.$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{6}$)D.f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{6}$)

分析 本题依据已知导数的特称,构造新函数g(x)=$\frac{f(x)}{sinx}$,根据g(x)=$\frac{f(x)}{sinx}$单调性进行判定,

解答 解:∵x∈(0,$\frac{π}{2}$)时,f′(x)sin2x<f(x)(1+cos2x)成立,
⇒f′(x)2sinx•cosx<f(x)2sin2x 成立⇒f′(x)sinx-f(x)cosx<0成立.
∴令g(x)=$\frac{f(x)}{sinx}$,g′(x)=$\frac{f′(x)sinx-f(x)cosx}{si{n}^{2}x}<0$⇒g′(x)<0在(0,$\frac{π}{2}$)恒成立,
∴g(x)在(0,$\frac{π}{2}$)上是单调递减的,故($\frac{π}{4}$)$>g(\frac{π}{3})$⇒$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$).
故选B.

点评 本题考查了构造抽象函数,利用抽象函数的导数,处理函数不等式问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若数列{an}是等差数列,首项a1<0,a203+a204>0,a203a204<0,则使前n项和Sn<0的最大自然数n是(  )
A.405B.404C.407D.406

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,则该顾客在3次抽奖中至多有两次获得一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点A(3,2),F是抛物线y2=2x的焦点.点M在抛物线上移动时,|MA|+|MF|取得最小值时M点的坐标为(  )
A.(0,0)B.($\frac{1}{2}$,1)C.(1,$\sqrt{2}$)D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设p:实数a满足不等式3a≤9,q:函数f(x)=$\frac{1}{3}$x3+$\frac{{3({3-a})}}{2}$x2+9x无极值点.
(1)若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围;
(2)已知“p∧q”为真命题,并记为r,且t:a2-(2m+$\frac{1}{2}}$)a+m(m+$\frac{1}{2}}$)>0,若r是¬t的必要不充分条件,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某手机专卖店针对iphone7手机推出分期付款方式,该店对最近购买iphone7手机的100人进行统计(注:每人仅购买一部手机),统计结果显示如表所示:
付款方式分1期分2期分3期分4期分5期
频数3525a10b
已知分3期付款的频率为$\frac{3}{20}$,请以此100人为作为样本,以此来估计消费人群总体,并解决以下问题:
( I)从消费人群总体中随机抽取3人,求“这3人中(每人仅购买一部手机)恰好有1人分4期付款”的概率
( II)若销售一部iphone7手机,顾客分1期付款(即全款),其利润为1000元;分2期付款或3期付款,其利润为1500元;分4期付款或5期付款,其利润为2000元,用X表示销售一部iphone7手机的利润,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),且x∈[0,1]时,f(x)=-ln(x2+e),则f(2017)的值等于(  )
A.-ln(e+1)B.-ln(4+e)C.-1D.-ln(e+$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列四个函数:①f(x)=2x;②f(x)=$\frac{1}{x}$;③f(x)=lg(x2+2);④f(x)=cosπx.
其中是“1的饱和函数”的所有函数的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系xOy中,圆C的方程为(x-2)2+(y-3)2=36,直线l:y=kx+5与圆C相交于A,B两点,M为弦AB上一动点,以M为圆心,4为半径的圆与圆C总有公共点,则实数k的最小值为(  )
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

同步练习册答案