精英家教网 > 高中数学 > 题目详情
12.已知点A(2,1),B(-2,3),C(0,1),则△ABC中,BC边上的中线长为$\sqrt{10}$..

分析 求出BC中点坐标,利用两点间的距离公式,可得结论.

解答 解:BC中点为(-1,2),所以BC边上中线长为$\sqrt{(2+1)^{2}+(1-2)^{2}}$=$\sqrt{10}$.
故答案为:$\sqrt{10}$.

点评 本题考查中点坐标公式,考查两点间的距离公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,则该顾客在3次抽奖中至多有两次获得一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),且x∈[0,1]时,f(x)=-ln(x2+e),则f(2017)的值等于(  )
A.-ln(e+1)B.-ln(4+e)C.-1D.-ln(e+$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列四个函数:①f(x)=2x;②f(x)=$\frac{1}{x}$;③f(x)=lg(x2+2);④f(x)=cosπx.
其中是“1的饱和函数”的所有函数的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′:AA′=3:4,则S△A′B′C′:S△ABC=9:49.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,设三棱柱ABC-A1B1C1的体积为1,过四边形ACC1A1的中心O作直线分别交棱AA1于点P,交棱CC1于点Q,则四棱锥B-APQC的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an}的前n项和Sn能取到最大值,且满足:a10+a11<0,a10•a11<0对于以下几个结论:
①数列{an}是递减数列;    
②数列{Sn}是递减数列;
③数列{Sn}的最大项是S10; 
④数列{Sn}的最小的正数是S19
其中正确的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系xOy中,圆C的方程为(x-2)2+(y-3)2=36,直线l:y=kx+5与圆C相交于A,B两点,M为弦AB上一动点,以M为圆心,4为半径的圆与圆C总有公共点,则实数k的最小值为(  )
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列结论:
①在△ABC中,sinA>sinB?a>b;
②常数数列既是等差数列又是等比数列;
③数列{an}的通项公式为${a_n}={n^2}-kn+1$,若{an}为递增数列,则k∈(-∞,2];
④△ABC的内角A,B,C满足sinA:sinB:sinC=3:5:7,则△ABC为锐角三角形.其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案