精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)画出函数f(x)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象.

分析 (1)将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)“五点画法”列表,描点,连线.

解答 解:函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
化简得:$f(x)=cos(2x-\frac{π}{3})+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})=sin(2x-\frac{π}{6})$,
函数的最小正周期T=$\frac{2π}{ω}=\frac{2π}{2}$=π,
由正弦函数图象及性质可知:$2x-\frac{π}{6}$∈[$2kπ-\frac{π}{2}$,$2kπ+\frac{π}{2}$](k∈Z)是单调增区间,
即$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2}⇒kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3}$,
故函数f(x)的增区间为:$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}](k∈Z)$.
(2)列表得:

x$-\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
$2x-\frac{π}{6}$$-\frac{π}{2}$0$\frac{π}{2}$π$\frac{3π}{2}$
y-1010-1
描图:

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,会利用五点画法描图,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设p:实数a满足不等式3a≤9,q:函数f(x)=$\frac{1}{3}$x3+$\frac{{3({3-a})}}{2}$x2+9x无极值点.
(1)若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围;
(2)已知“p∧q”为真命题,并记为r,且t:a2-(2m+$\frac{1}{2}}$)a+m(m+$\frac{1}{2}}$)>0,若r是¬t的必要不充分条件,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′:AA′=3:4,则S△A′B′C′:S△ABC=9:49.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an}的前n项和Sn能取到最大值,且满足:a10+a11<0,a10•a11<0对于以下几个结论:
①数列{an}是递减数列;    
②数列{Sn}是递减数列;
③数列{Sn}的最大项是S10; 
④数列{Sn}的最小的正数是S19
其中正确的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin(ωx+φ),(x∈R,ω>0,0<φ<π)的部分图象如图所示,则(  )
A.$ω=\frac{π}{2},φ=\frac{π}{4}$B.$ω=\frac{π}{3},φ=\frac{π}{6}$C.$ω=\frac{π}{4},φ=\frac{π}{4}$D.$ω=\frac{π}{4},φ=\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系xOy中,圆C的方程为(x-2)2+(y-3)2=36,直线l:y=kx+5与圆C相交于A,B两点,M为弦AB上一动点,以M为圆心,4为半径的圆与圆C总有公共点,则实数k的最小值为(  )
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{x+1}{2x-1}$,数列{an}的前n项和为Sn,且an=f($\frac{n}{2017}$),则S2017=(  )
A.1008B.1010C.$\frac{2019}{2}$D.2019

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如下表:
每件产品A每件产品B
研制成本、搭载
费用之和(万元)
2030计划最大资金额
300万元
产品重量(千克)105最大搭载重量110千克
预计收益(万元)8060
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知bsinA=$\sqrt{3}$acosB.
(1)求角B 的值;
(2)若cosAsinC=$\frac{{\sqrt{3}-1}}{4}$,求角A的值.

查看答案和解析>>

同步练习册答案