精英家教网 > 高中数学 > 题目详情
6.在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知bsinA=$\sqrt{3}$acosB.
(1)求角B 的值;
(2)若cosAsinC=$\frac{{\sqrt{3}-1}}{4}$,求角A的值.

分析 (1)由已知及正弦定理可得asinB=$\sqrt{3}$acosB,可求tanB=$\sqrt{3}$,结合范围B∈(0,π),即可得解B的值.
(2)利用三角形内角和定理,三角函数恒等变换的应用化简已知等式可得sin(2A+$\frac{π}{3}$)=-$\frac{1}{2}$,结合A的范围,可得2A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{5π}{3}$),从而可求A的值.

解答 (本题满分为14分)
解:(1)∵由正弦定理可得:bsinA=asinB,
又∵bsinA=$\sqrt{3}$acosB,
∴asinB=$\sqrt{3}$acosB,
∴tanB=$\sqrt{3}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$…6分
(2)∵cosAsinC=$\frac{{\sqrt{3}-1}}{4}$,
∴cosAsin($\frac{2π}{3}$-A)=$\frac{{\sqrt{3}-1}}{4}$,
∴cosA($\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA)=$\frac{\sqrt{3}}{2}$×$\frac{1+cos2A}{2}$+$\frac{1}{4}$sin2A=$\frac{{\sqrt{3}-1}}{4}$,
∴sin(2A+$\frac{π}{3}$)=-$\frac{1}{2}$,
∵A∈(0,$\frac{2π}{3}$),可得:2A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{5π}{3}$),
∴2A+$\frac{π}{3}$=$\frac{7π}{6}$,可得:A=$\frac{5π}{12}$…14分

点评 本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,特殊角的三角函数值在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)画出函数f(x)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A,B,C的对边分别为a,b,c,若a=2,A=45°,C=75°,则b等于(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正实数x,y满足$\frac{x}{2}$+2y-2=lnx+lny,则xy=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y 满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,若z=3x+y 的最大值为M,最小值为m,且M+m=0,则实数a 的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数f(x)=k•xa的图象过点(3,$\sqrt{3}$),则k+a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设m,n∈R,定义在区间[m,n]上函数f(x)=x2的值域是[0,4],若关于t的方程|3-|t|-$\frac{1}{4}$|-n=0恰有4个互不相等的实数解,则m+n的取值范围是$({-2,-\frac{7}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2cos($\frac{π}{2}$-x)sinx+(sinx+cosx)2
(1)求函数f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象,求$g(\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列-$\frac{1}{2}$,$\frac{1}{4}$,$-\frac{1}{8}$,$\frac{1}{16}$,…的一个通项公式可能是(  )
A.${(-1)^{n-1}}\frac{1}{2n}$B.${(-1)^{n-1}}\frac{1}{2^n}$C.${(-1)^n}\frac{1}{2n}$D.${(-1)^n}\frac{1}{2^n}$

查看答案和解析>>

同步练习册答案