精英家教网 > 高中数学 > 题目详情
17.在△ABC中,角A,B,C的对边分别为a,b,c,若a=2,A=45°,C=75°,则b等于(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{6}$

分析 由已知利用三角形内角和定理可求B,进而利用正弦定理即可得解b的值.

解答 解:∵A=45°,C=75°,a=2,
∴B=180°-A-C=60°,
∴b=$\frac{asinB}{sinA}$=$\frac{2×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{6}$.
故选:D.

点评 本题主要考查了三角形内角和定理,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′:AA′=3:4,则S△A′B′C′:S△ABC=9:49.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{x+1}{2x-1}$,数列{an}的前n项和为Sn,且an=f($\frac{n}{2017}$),则S2017=(  )
A.1008B.1010C.$\frac{2019}{2}$D.2019

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如下表:
每件产品A每件产品B
研制成本、搭载
费用之和(万元)
2030计划最大资金额
300万元
产品重量(千克)105最大搭载重量110千克
预计收益(万元)8060
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数y=f(x)为奇函数,则它的图象必经过点(  )
A.(-a,-f(a))B.(0,0)C.(a,f(-a))D.(-a,-f(-a))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列结论:
①在△ABC中,sinA>sinB?a>b;
②常数数列既是等差数列又是等比数列;
③数列{an}的通项公式为${a_n}={n^2}-kn+1$,若{an}为递增数列,则k∈(-∞,2];
④△ABC的内角A,B,C满足sinA:sinB:sinC=3:5:7,则△ABC为锐角三角形.其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,为了测量对岸A,B两点的距离,沿河岸选取C,D两点,测得CD=2km,∠CDB=∠ADB=30°,∠ACD=60°,∠ACB=45°,求A,B两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知bsinA=$\sqrt{3}$acosB.
(1)求角B 的值;
(2)若cosAsinC=$\frac{{\sqrt{3}-1}}{4}$,求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.60B.72C.81D.114

查看答案和解析>>

同步练习册答案