精英家教网 > 高中数学 > 题目详情
已知y=
x
在x=1处可导,求y′.
考点:导数的运算
专题:导数的概念及应用
分析:求函数的导数,根据导数公式即可得到结论.
解答: 解:函数的导数f′(x)=
1
2
x

则f′(1)=
1
2
点评:本题主要考查导数的计算,要求熟练掌握常见函数的导数公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设i是虚数单位,若复数a-
10
3-i
(a∈R)是纯虚数,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx•cosx+cos2x-
1
2

(1)求f(x)的最小正周期;
(2)求f(x)在区间[-
π
4
π
4
]的值域;
(3)若f(
θ
2
)=
2
2
5
,θ∈[
π
4
4
],求sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax,(a>0且a≠1),F(x)=f(1+x)-f(1-x).
(1)求函数F(x)的定义域;
(2)判断F(x)的奇偶性,并说明理由;
(3)确定x为何值时,有F(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x
5x+1
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x
x2+1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,E为PA中点.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)已知PA=2AB=2,求二面角D-BE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

x∈[-1,1)时,求f(x)=a•2x+2+3•4x(a>-3)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知点A(0,1),B点在直线y=-1上,M点满足
MB
OA
MA
AB
=
MB
BA
,设M(x,y)
(1)求x,y满足的关系式y=f(x);
(2)斜率为1的直线l过原点O,y=f(x)的图象为曲线C,求l被曲线C截得的弦长.

查看答案和解析>>

同步练习册答案