精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+alnx的图象与直线l:y=-2x+c相切,切点的横坐标为1.
(1)求函数f(x)的表达式和直线l的方程;
(2)求函数f(x)的单调区间;
(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.
分析:(1)求导数,利用导数的几何意义求直线方程.
(2)利用导数求函数的单调区间.
(3)将不等式转化为最值恒成立,然后利用导数求函数的最值.
解答:解:(1)因为f′(x)=2x+
a
x
,所以-2=f'(1)=2+a,所以a=-4
所以f(x)=x2-4lnx…(2分)
所以f(1)=1,所以切点为(1,1),所以c=3
所以直线l的方程为y=-2x+3…(4分)
(2)因为f(x)的定义域为x∈(0,+∞)所以由f′(x)=
2x2-4
x
>0
x>
2
…(6分)
f′(x)=
2x2-4
x
<0
0<x<
2
…(7分)
故函数f(x)的单调减区间为(0,
2
)
,单调增区间为(
2
,+∞)
…(8分)
(3)令g(x)=f(x)-2x,则g′(x)=2x-
4
x
-2>0(x>0)
得x>2
所以g(x)在(0,2]上是减函数,在[2,+∞)上是增函数…(10分)
g(x)min=g(2)=-4ln2,所以m≤g(x)min=-4ln2…(11分)
所以当f(x)≥2x+m在f(x)的定义域内恒成立时,实数m的取值范围是(-∞,-4ln2]…(12分)
点评:本题主要考查导数的综合应用,要求熟练掌握函数的单调性、最值和极值与导数的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案