精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别是角A,B,C的对边且acosC=b-
1
2
c.
(Ⅰ)求角A的大小;
(Ⅱ)当a=
3
,S△ABC=
3
2
时,求边b和c的大小.
考点:余弦定理,正弦定理
专题:解三角形
分析:(Ⅰ)由已知可得sinAcosC=sinB-
1
2
sinC,又sinB=sin(A+C)=sinAcosC+cosAsinC,可解得cosA=
1
2
,又0<A<π,即可求得角A的大小;
(Ⅱ)由S△ABC=
3
2
=
1
2
bcsinA可得:bc=2,由余弦定理可得b2+c2-bc=3,联立即可解得b,c的值.
解答: 解:(Ⅰ)由acosC=b-
1
2
c.可得:sinAcosC=sinB-
1
2
sinC,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
1
2
sinC=cosAsinC,
∵sinC≠0,
∴cosA=
1
2

又∵0<A<π,
∴A=
π
3

(Ⅱ)由S△ABC=
3
2
=
1
2
bcsinA可得:bc=2.
由余弦定理可得:a2=b2+c2-2bccosA,可知:b2+c2-bc=3,
即有:(b+c)2-3bc=3,
所以解得:b+c=3,
从而解得:b=2,c=1,或b=1,c=2
点评:此题主要考查了正弦定理、余弦定理以及特殊角的三角函数值的应用,熟练掌握正弦定理,余弦定理是解题的关键,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求值:
a
•[
b
(
a
c
)-(
a
b
)
c
]
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”类似的,我们在平面向量集D={
a
|
a
=(x,y),x∈R,y∈R}上也可以定义在一个称“序”的关系,记为“>>”,定义如下:对于任意两个向量
a1
=(x1,y1
a
2=(x2,y2),“
a
1>>
a
2”当且仅当“x1>x2”或“x1=x2”且“y1>y2”,按上述定义的关系“>>”给出如下四个命题:
①若
e
1=(1,0),
e
2=(0,1),
0
=(0,0),则
e
1>>
e
2>>
0

②若
a
1>>
a
2
a
2>>
a
3,则
a
1>>
a
3
③若
a
1>>
a
2,则对于任意
a
∈D,
a
1+
a
>>
a
2+
a

④对于任意向量
a
>>
0
0
=(0,0),若
a
1>>
a
2,则
a
a
1=
a
a
2
其中真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程组:
2x+y=7
4x+5y=11

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AO=2,B是半个单位圆上的动点,△ABC是等边三角形,求当∠AOB等于多少时,四边形OACB的面积最大,并求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a3=1,Sn是其前n项和,且Sn=an+1(n∈N*).
(Ⅰ)求an,Sn
(Ⅱ)设bn=log2Sn,数列{cn}满足cn•bn+3•bn+4=1+n(n+1)(n+2)•2bn,数列{cn}的前n项和为Tn,当n>1时,求使
2
n-1
Tn<2n+
n+1
5
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+2x2
(Ⅰ)求函数f(x)的极大值和极小值;
(Ⅱ)若不等式f(x)≥ax+4xlnx恒成立,求实数a的取值范围;
(Ⅲ)证明:
4×1+1
12
+
4×2+1
22
+
4×3+1
32
+…+
4×n+1
n2
≥ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

两台相互独立工作的电脑产生故障的概率分别为a,b,则产生故障的电脑台数均值为(  )
A、abB、a+b
C、1-abD、1-a-b

查看答案和解析>>

同步练习册答案