精英家教网 > 高中数学 > 题目详情
如图3:在空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点.
(1)求证:平面ABE平面BCD;
(2)若F是AB的中点,BC=AD,且AB=8,AE=10,求EF的长.
 
(1)见解析(2)
(1)证明:因为AC=AD,BC=BD,且E是CD的中点,所以BECD,且AECD,
又AEBE=E,所以CD平面ABE,所以平面ABE平面BCD
(2)因为E是CD的中点,所以CE=ED,由(1)知BECD,且AECD,所以
BC2=BE2+CE2=BE2+ED2,AD2=AE2+ED2,因为BC=AD,所以AE = BE……3分
又因为F是AB的中点,所以AF=FB=4,且EFAB,所以EF=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

三棱锥P-ABC中,三侧棱PA、PB、PC两两相互垂直,三侧面面积分
别为S1、S2、S3,底面积为S,三侧面与底面分别成角α、β、γ,(1)求S(用S1、S2、S3表示);(2)求证:cos2α+cos2β+cos2γ=1;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形ABCD与矩形ABEF的公共边为AB,且平面ABCD平面ABEF,如图所示,FD, AD=1, EF=

(Ⅰ)证明:AE 平面FCB;
(Ⅱ)求异面直线BD与AE所成角的余弦值
(Ⅲ)若M是棱AB的中点,在线段FD上是否存在一点N,使得MN∥平面FCB?
证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD—A1B1C1D1
(1)求证: BD⊥平面ACC1
(2)求二面角C1—BD—C的正切值
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(Ⅰ)求证:
(Ⅱ)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形为菱形,,两个正三棱锥(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,点分别在上,且.
(Ⅰ)求证:;
(Ⅱ)求平面与底面所成锐二面角的平面角的正切值;
(Ⅲ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在北纬纬线上有A,B两点,设该纬线圈上A,B两点的劣弧长为,(R为地球半径),则A,B两点间的球面距离为__________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于四面体ABCD,下列命题正确的是         (写出所有正确命题的编号)。
①相对棱ABCD所在的直线异面;
②由顶点A作四面体的高,其垂足是BCD的三条高线的交点;
③若分别作ABCABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P—ABCD的底面ABCD为等腰梯形,AB//CD,AC⊥DB,ACBD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=PB⊥PD.
(Ⅰ)求异面直线PDBC所成角的余弦值;
(Ⅱ)求二面角P—AB—C的大小;
(Ⅲ)设点M在棱PC上,且,问为何值时,PC⊥平面BMD.

查看答案和解析>>

同步练习册答案