精英家教网 > 高中数学 > 题目详情
在正方体ABCD—A1B1C1D1
(1)求证: BD⊥平面ACC1
(2)求二面角C1—BD—C的正切值
 
(1)见解析(2)
(1)证明:∵BD⊥AC,又∵CC1⊥CD, CC1⊥CB,
∴CC1⊥平面AC,∴CC1⊥BD,∴BD⊥平面ACC1
(2)解:连接AC,交BD于点O,则BD⊥ CO,连接C1 O,则
BD⊥C1 O,∴∠C O C1为所求二面角C1—BD—C的平面角,
在Rt△CC1O中,tan∠C O C1 =
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

垂直于所在平面,与平面角,又,①求证:;②求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,平面侧面。
(Ⅰ)求证:
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θφ的大小关系,并予以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=,EF=EC=1,
⑴求证:平面BEF⊥平面DEF;
⑵求二面角A-BF-E的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在几何体中,面为矩形,
(1)求证;当时,平面PBD⊥平面PAC;
(2)当时,求二面角的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图3:在空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点.
(1)求证:平面ABE平面BCD;
(2)若F是AB的中点,BC=AD,且AB=8,AE=10,求EF的长.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,点在棱的延长线上,


(Ⅰ) 求证://平面 ;(Ⅱ) 求证:平面平面
(Ⅲ)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中错误的是(        ).
A.如果平面⊥平面,那么内所有直线都垂直于平面
B.如果平面⊥平面,那么内一定存在直线平行于平面
C.如果平面不垂直于平面,那么内一定不存在直线垂直于平面
D.如果平面⊥平面,平面⊥平面,那么平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是直角梯形的四棱锥中,AD∥BC,∠ABC=90°,且,又PA⊥平面ABCD,AD=3AB=3PA=3a。
(I)求二面角P—CD—A的正切值;
(II)求点A到平面PBC的距离。

查看答案和解析>>

同步练习册答案