精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),过双曲线的右焦点F作其中一条渐近线的垂线,垂足为M,△OFM的内切圆和x轴切于点N(其中O是坐标原点),而N恰是抛物线y2=3ax的焦点,则双曲线的离心率为(  )
A、
4
3
B、
5
3
C、
5
4
D、
3
2
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:求出抛物线的焦点坐标,利用三角形相似求出双曲线的离心率即可.
解答: 解:N恰是抛物线y2=3ax的焦点(
3a
4
,0),由双曲线的性质可得|FM|=b,|OM|=a,|OF|=c,FM⊥OM,MN⊥OF,△OMN∽△OMF,
a
c
=
3a
4
c

∴e=
4
3

故选:A.
点评:本题考查双曲线的基本性质,抛物线的基本性质的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设(2x-3)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a1+a2+a3的值为(  )
A、1B、16C、-15D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,+∞),观察下列各式:x+
1
x
≥2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3,x+
27
x3
=
x
3
+
x
3
+
x
3
+
27
x3
≥4…,类比有x+
a
xn
≥n+1(n∈N*),则a=(  )
A、n
B、2n
C、n2
D、nn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3+ex-ax在区间[0,+∞)上单调递增,则实数a的取值范围是(  )
A、[0,1)
B、(0,1]
C、[1,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设离散性随机变量ξ可能取的值为1,2,3,4,P(ξ=k)=ak+b(k=1,2,3,4),Eξ=16,则5a+b=(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率e=
5
4
,则该双曲线的渐近线方程为(  )
A、4x±3y=0
B、3x±4y=0
C、5x±3y=0
D、3x±5y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2
(Ⅰ)求tan2α; 
(Ⅱ)求
2sinα+cosα
sinα-cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
x+2
,a,b∈(0,+∞),
(Ⅰ)用分析法证明:f(
a
b
)+f(
b
a
)≤
2
3

(Ⅱ)设a+b>4,求证:af(b),bf(a)中至少有一个大于
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足:an+1-an=2,a1=1,等比数列{bn}满足:b1=a1,b4=a14
(1)求an,bn;   
(2)设Cn=anbn,求{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案