精英家教网 > 高中数学 > 题目详情
设离散性随机变量ξ可能取的值为1,2,3,4,P(ξ=k)=ak+b(k=1,2,3,4),Eξ=16,则5a+b=(  )
A、6B、7C、8D、9
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:由题意知1×(a+b)+2×(2a+b)+3×(3a+b)+4×(4a+b)=16,且a+b+2a+b+3a+b+4a+b=1,由此能求出5a+b.
解答: 解:由题意知:
1×(a+b)+2×(2a+b)+3×(3a+b)+4×(4a+b)=16,
∴(a+4a+9a+16a)+(b+2b+3b+4b)=16,
整理,得30a+10b=16,①
又a+b+2a+b+3a+b+4a+b=1,
∴10a+4b=1,②
①②联立,解得a=
27
10
,b=-
13
2

∴5a+b=7.
故选:B.
点评:本题考查两数和的求法,是中档题,解题时要认真审题,注意离散型随机变量的分布列和数学期望的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将两枚质地均匀的骰子各掷一次,设事件A={两个点数互不相同},B={至少出现一个5点},则概率P(A|B)等于(  )
A、
10
11
B、
5
11
C、
5
6
D、
11
36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,则(  )
A、f(2)>e2f(0),f(2011)>e2011f(0)
B、f(2)<e2f(0),f(2011)>e2011f(0)
C、f(2)>e2f(0),f(2011)<e2011f(0)
D、f(2)<e2f(0),f(2011)<e2011f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次独立性检验中,有300人按性别和是否色弱分类如下表:
正常 130 120
色弱 20 30
由此表计算得统计量K2=(  )(参考公式:K2=
(ad-bc)2(a+b+c+d)
(a+b)(a+c)(b+d)(c+d)
A、2B、3C、2.4D、3.6

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC一定是(  )
A、钝角三角形
B、直角三角形
C、锐角三角形
D、形状不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),过双曲线的右焦点F作其中一条渐近线的垂线,垂足为M,△OFM的内切圆和x轴切于点N(其中O是坐标原点),而N恰是抛物线y2=3ax的焦点,则双曲线的离心率为(  )
A、
4
3
B、
5
3
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

从某开发区随机抽取10个小型企业,获得第i个小型企业的月收入xi(单位:万元)与月利润yi(单位:万元)的数据资料,算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
x
 
2
i
=720.
(Ⅰ)求小型企业的月利润y对月收入x的线性回归方程y=bx+a
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该开发区某小型企业月收入为20万元,预测该小型企业的月利润.
附:线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x
,其中
.
x
.
y
为样本平均值,线性回归方程也可写为
y
=
b
x+
a
y.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:(tan10°-
3
)sin40°.

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角△ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA,
(1)求角B大小
(2)若a=3
3
,c=5,求AC边上的高h.

查看答案和解析>>

同步练习册答案