精英家教网 > 高中数学 > 题目详情
设双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率e=
5
4
,则该双曲线的渐近线方程为(  )
A、4x±3y=0
B、3x±4y=0
C、5x±3y=0
D、3x±5y=0
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意,
c
a
=
5
4
,可得b=
c2-a2
=
3
4
a,从而可求双曲线的渐近线方程.
解答: 解:由题意,
c
a
=
5
4

∴c=
5
4
a,
∴b=
c2-a2
=
3
4
a,
∴双曲线的渐近线方程为y=±
b
a
x=±
3
4
x,即3x±4y=0.
故选:B.
点评:本题考查双曲线的几何性质,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若样本x1+2,x2+2,…,xn+2的平均数为10,方差为3,则样本2x1+3,2x2+3,…,2xn+3的平均数、方差、标准差是(  )
A、19,12,2
3
B、23,12,2
3
C、23,18,3
2
D、19,18,3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx+x2+ax,若曲线y=f(x)存在与直线2x-y=0平行的切线,则实数a的取值范围是(  )
A、(-∞,-2]
B、(-∞,-2)
C、(-2,+∞)
D、[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
A、命题“若a<b,则am2<bm2”的否命题是真命题
B、已知x∈R,则“x>1”是“x>2”的充分不必要条件
C、命题“存在x∈R,x2-x>0”的否定是“对任意x∈R,x2-x<0”
D、用反证法证明命题“若a2+b2=0,则a,b全为0”(a,b∈R)时,应反设为a、b全不为0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),过双曲线的右焦点F作其中一条渐近线的垂线,垂足为M,△OFM的内切圆和x轴切于点N(其中O是坐标原点),而N恰是抛物线y2=3ax的焦点,则双曲线的离心率为(  )
A、
4
3
B、
5
3
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+2x, x>0
0,         x=0
x2+mx, x<0
是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围;
(3)若函数f(x)=k有三个不同的实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x+sin2x-
3
2

(Ⅰ) 求函数f(x)在[0,
π
2
]的值域;
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1,sinA),
n
=(2,sinB)共线,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.
(1)求数列{an}的公比q.
(2)若a1-a3=3,求Sn,并讨论Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x的焦点为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,且椭圆的长轴长为4
2
,左右顶点分别为A,B,经过椭圆左焦点的直线l与椭圆交于C、D两点.
(1)求椭圆标准方程:
(2)记△ABD与△ABC的面积分别为S1和S2,且|S1-S2|=4,求直线l方程;
(3)椭圆的上顶点G作直线m、n,使m⊥n,直线m、n分别交椭圆于点P、Q.问:PQ是否过一定点,若是求出该点的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案