精英家教网 > 高中数学 > 题目详情
10.用M[A]表示非空集合A中的元素个数,记|A-B|=$\left\{\begin{array}{l}M[A]-M[B],M[A]≥M[B]\\ M[B]-M[A],M[A]<M[B]\end{array}$,若A={1,2,3},B={x||x2-2x-3|=a},且|A-B|=1,则实数a的取值范围为0≤a<4或a>4.

分析 根据已知条件容易判断出a=0符合,a>0时,由集合B得到两个方程,x2-2x-3-a=0或x2-2x-3+a=0.容易判断出B有2个或4个元素,所以判别式△=4-4(a-3)<0或△=4-4(a-3)>0,这样即可求出a的范围.

解答 解:(1)若a=0,得到x2-2x-3=0,∴集合B有2个元素,则|A-B|=1,符合条件|A-B|=1;
(2)a>0时,得到x2-2x-3=±a,即x2-2x-3-a=0或x2-2x-3+a=0;
对于方程x2-2x-3-a=0,△=4+4(3+a)>0,即该方程有两个不同实数根;
又|A-B|=1,B有2个或4个元素;
∴△=4-4(a-3)<0或△=4-4(a-3)>0;
∴a<4或a>4.
综上所述0≤a<4或a>4.
故答案为:0≤a<4或a>4.

点评 考查对新定义|A-B|的理解及运用情况,以及描述法表示集合,一元二次方程解的情况和判别式△的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知球的直径SC=2,A,B是该球球面上的两点,AB=1,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为(  )
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在边长为1的正方形ABCD中,向量$\overrightarrow{DE}=\frac{1}{2}\overrightarrow{DC},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}$,则向量$\overrightarrow{AE},\overrightarrow{AF}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上一点C,过双曲线中心的直线交双曲线于A,B两点,设直线AC,BC的斜率分别为k1,k2,则当$\frac{2}{{{k_1}{k_2}}}+ln{k_1}+ln{k_2}$最小时,双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若a>0,b>0,3a+2b=1,则ab的最大值是$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.“a,b都是偶数”是“a+b是偶数”的充分不必要条件.(从“充分必要”,“充分不必要”,“必要不分”,“既不充分也不必要”中选择适当的填写)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在(1,b)处的切线过点(2,1),求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-2x2+(a+4)x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线l1:3x+4y-12=0,l2过点P(4,-5)且与l1平行,则l2的方程为3x+4y+8=0,l1到l2距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.k∈Z,下列各组角的表示中,终边相同的角是(  )
A.$\frac{kπ}{2}$与$kπ±\frac{π}{2}$B.2kπ+π与4kπ±πC.$kπ+\frac{π}{6}$与$2kπ±\frac{π}{6}$D.$\frac{kπ}{3}$与$kπ+\frac{π}{3}$

查看答案和解析>>

同步练习册答案