精英家教网 > 高中数学 > 题目详情
18.中心均为原点O的双曲线C2与椭圆C1:$\frac{{x}^{2}}{4}$+y2=1有公共的焦点,其中F为右焦点,点A是C1,C2在第一象限的公共点,若|OA|=|OF|,则C2的离心率为$\frac{{\sqrt{6}}}{2}$.

分析 设左焦点为F′,则|OA|=$\frac{1}{2}$|FF′|,AF⊥AF′.求出|AF′|-|AF|=$\sqrt{12-4}$=2$\sqrt{2}$,即可求出C2的离心率.

解答 解:设左焦点为F′,则|OA|=$\frac{1}{2}$|FF′|,∴AF⊥AF′.
∵|AF|+|AF′|=4,|AF|2+|AF′|2=12,
∴2|AF′||AF|=4,
∴|AF′|-|AF|=$\sqrt{12-4}$=2$\sqrt{2}$,
∴C2的离心率为$\frac{\sqrt{3}}{\sqrt{2}}$=$\frac{{\sqrt{6}}}{2}$,
故答案为:$\frac{{\sqrt{6}}}{2}$.

点评 本题考查椭圆与双曲线的简单性质,求得|AF′|-|AF|=$\sqrt{12-4}$=2$\sqrt{2}$是关键,考查分析与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|1<x<3},B={x|0<x<2},则A∩B=(  )
A.{x|0<x<3}B.{x|1<x<3}C.{x|0<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=x+\frac{a}{x}(a∈$R),g(x)=lnx,若关于x的方程$\frac{g(x)}{x^2}=f(x)-2e$(e为自然对数的底数)只有一个实数根,则a=${e^2}+\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=x+\frac{a}{x}+2$的值域为(-∞,0]∪[4,+∞),则a的值是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正项数列{an}的前n项和为Sn,且Sn,an,$\frac{1}{2}$成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=log2an+2,设数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn,证明$\frac{1}{2}≤{T_n}<1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用秦九韶算法求f(x)=2x3-x2+4x+3,需要加法与乘法运算的次数分别为(  )
A.2,3B.3,3C.3,2D.2,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,向量$\overrightarrow{b}$与$\overrightarrow{c}$共线,则向量$\overrightarrow{a}$与$\overrightarrow{c}$共线
B.向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,向量$\overrightarrow{b}$与$\overrightarrow{c}$不共线,则向量$\overrightarrow{a}$与$\overrightarrow{c}$不共线
C.向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A,B,C,D四点一定共线
D.向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,则向量$\overrightarrow{a}$与$\overrightarrow{b}$都是非零向量

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,$\frac{{b}^{2}-{a}^{2}-{c}^{2}}{ac}$=$\frac{cos(A+C)}{sinAcosA}$,且$\frac{π}{4}<B<\frac{π}{2}$.
(1)求角A;
(2)若a=2,当sinB+cos($\frac{7π}{12}-C$)取得最大值时,求B和b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(ωx+Φ)+cos(ωx+Φ)(ω>0,|Φ|<$\frac{π}{2}$的最小正周期为π,且对?x∈R,f(x)≤f(0),则(  )
A.f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递增B.f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递减
C.f(x)在$(\frac{π}{6},\frac{π}{3})$单调递增D.f(x)在$(\frac{π}{6},\frac{π}{3})$单调递减

查看答案和解析>>

同步练习册答案