分析 设左焦点为F′,则|OA|=$\frac{1}{2}$|FF′|,AF⊥AF′.求出|AF′|-|AF|=$\sqrt{12-4}$=2$\sqrt{2}$,即可求出C2的离心率.
解答 解:设左焦点为F′,则|OA|=$\frac{1}{2}$|FF′|,∴AF⊥AF′.
∵|AF|+|AF′|=4,|AF|2+|AF′|2=12,
∴2|AF′||AF|=4,
∴|AF′|-|AF|=$\sqrt{12-4}$=2$\sqrt{2}$,
∴C2的离心率为$\frac{\sqrt{3}}{\sqrt{2}}$=$\frac{{\sqrt{6}}}{2}$,
故答案为:$\frac{{\sqrt{6}}}{2}$.
点评 本题考查椭圆与双曲线的简单性质,求得|AF′|-|AF|=$\sqrt{12-4}$=2$\sqrt{2}$是关键,考查分析与运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<3} | B. | {x|1<x<3} | C. | {x|0<x<2} | D. | {x|1<x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,向量$\overrightarrow{b}$与$\overrightarrow{c}$共线,则向量$\overrightarrow{a}$与$\overrightarrow{c}$共线 | |
| B. | 向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,向量$\overrightarrow{b}$与$\overrightarrow{c}$不共线,则向量$\overrightarrow{a}$与$\overrightarrow{c}$不共线 | |
| C. | 向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A,B,C,D四点一定共线 | |
| D. | 向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,则向量$\overrightarrow{a}$与$\overrightarrow{b}$都是非零向量 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递增 | B. | f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递减 | ||
| C. | f(x)在$(\frac{π}{6},\frac{π}{3})$单调递增 | D. | f(x)在$(\frac{π}{6},\frac{π}{3})$单调递减 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com