分析 把方程化为 $\frac{lnx}{x}$=x2-2ex+a,求得 h(x)=$\frac{lnx}{x}$的最大值为 h(e)=$\frac{1}{e}$,再求得m(x)=x2-2ex+a 的最小值 m(e)=a-e2,根据 a-e2=$\frac{1}{e}$求出a的值.
解答 解:关于x的方程 $\frac{g(x)}{{x}^{2}}$=f(x)-2e,可化为$\frac{lnx}{x}$=x2-2ex+a,
令h(x)=$\frac{lnx}{x}$,令h'(x)=0,得x=e,
故 h(x)的最大值为 h(e)=$\frac{1}{e}$,
令m(x)=x2-2ex+a,可得:x=e时,m(x)的最小值 m(e)=a-e2 ,
由 a-e2=$\frac{1}{e}$可得 a=e2+$\frac{1}{e}$,
故答案为:${e^2}+\frac{1}{e}$.
点评 本题主要考查导数的运算法则的应用,利用导数求函数的最值,体现了转化的数学思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 抽签法 | B. | 系统抽样 | C. | 分层抽样 | D. | 随机数表法 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{2,\frac{5}{2}}]$ | B. | $[{\frac{5}{4},\frac{5}{2}}]$ | C. | $[{\frac{4}{5},\frac{5}{2}}]$ | D. | $[{\frac{5}{4},2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com