精英家教网 > 高中数学 > 题目详情
14.执行如图所示的程序框图,若输入x=78,则循环体执行的次数为(  )
A.4B.5C.6D.7

分析 分析程序框图,循环体为“直到型”循环结构,按照循环结构进行运算,即可得解.

解答 解:模拟程序的运行,可得
x=78,
第1次循环:y=$\frac{1}{2}$×78-1=38,
不满足条件|x-y|<3,第2次循环x=38,y=$\frac{1}{2}×38-1$=18,
不满足条件|x-y|<3,第3次循环x=18,y=$\frac{1}{2}×18$-1=8,
不满足条件|x-y|<3,第4次循环x=8,y=$\frac{1}{2}×$8-1=3,
不满足条件|x-y|<3,第5次循环x=3,y=$\frac{1}{2}×$3-1=$\frac{1}{2}$,
满足条件|x-y|<3,退出循环,输出y的值为$\frac{1}{2}$,则循环体执行的次数为5.
故选:B

点评 本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-1|+|x+2|
(Ⅰ) 解关于x的不等式f(x)≥4;
(Ⅱ) 若关于x的不等式f(x)≥c恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用辗转相除法求204,168,186三个数的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$tanθ=-\frac{4}{3}$(0<θ<π),则cosθ=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=x+\frac{a}{x}(a∈$R),g(x)=lnx,若关于x的方程$\frac{g(x)}{x^2}=f(x)-2e$(e为自然对数的底数)只有一个实数根,则a=${e^2}+\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将y=sin($ωx+\frac{π}{4}$)图象向右平移$\frac{π}{4}$单位长度后,与原图图象重合,则正数ω最小值为(  )
A.4B.8C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=x+\frac{a}{x}+2$的值域为(-∞,0]∪[4,+∞),则a的值是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用秦九韶算法求f(x)=2x3-x2+4x+3,需要加法与乘法运算的次数分别为(  )
A.2,3B.3,3C.3,2D.2,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A(0,-1,2),B(0,2,-4),C(1,2,-1),则A,B,C三点(  )
A.共线B.共面C.不共面D.无法确定

查看答案和解析>>

同步练习册答案