精英家教网 > 高中数学 > 题目详情
4.已知A(0,-1,2),B(0,2,-4),C(1,2,-1),则A,B,C三点(  )
A.共线B.共面C.不共面D.无法确定

分析 求出向量$\overrightarrow{AB}$、$\overrightarrow{AC}$,判断$\overrightarrow{AB}$与$\overrightarrow{AC}$不共线,即可得出A,B,C三点共面.

解答 解:∵A(0,-1,2),B(0,2,-4),C(1,2,-1),
∴$\overrightarrow{AB}$=(0,3,-6),$\overrightarrow{AC}$=(1,3,-3),
又$\frac{0}{1}$≠$\frac{3}{3}$≠$\frac{-6}{-3}$,
∴$\overrightarrow{AB}$与$\overrightarrow{AC}$不共线,
即A,B,C三点共面.
故选:B.

点评 本题考查了利用空间向量判断三点共面的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输入x=78,则循环体执行的次数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点.已知f(x)=x2+bx+c.
(1)若f(x)有两个不动点为-3,2,求函数y=f(x)的零点;
(2)若c=$\frac{b^2}{4}$时,函数f(x)没有不动点,求实数b的取值范围;
(3)若对任意的b∈R,函数y=f(x)都有两个相异的不动点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知E,F,G,H为空间四边形ABCD的四条边上的点,且四边形EFGH为平行四边形.证明:
(1)EH∥平面BCD
(2)BD∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设F(c,0),A(-a,0)分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点和顶点,它的右准线为l:x=4,且椭圆C过点(c,$\frac{\sqrt{3}b}{2}$).
(1)求椭圆C的方程;
(2)设P,Q是右准线l上的两个动点,且PF⊥QF,直线AP,AQ分别与椭圆交于点M,N两点,求证:直线MN过一定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是定义在R上周期为2的偶函数,且当x∈[0,1]时,f(x)=2x-1,则函数g(x)=f(x)-log5|x|的零点个数是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“m=2”是“函数f(x)=xm为实数集R上的偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$y=x+\frac{t}{x}$有如下性质:当t>0时,在$(0,\sqrt{t})$单调递减,在$(\sqrt{t},+∞)$单调递增.
(Ⅰ)若$f(x)=\frac{{4{x^2}-12x-3}}{2x+1},x∈[0,1]$,利用上述性质求f(x)的单调区间(不用证明)和值域;
(Ⅱ)对于(Ⅰ)中的f(x)和g(x)=-x-2a,若对任意x1∈[0,1],均存在x2∈[0,1],使g(x2)=f(x1),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=cosx•cos(x-$\frac{π}{3}$),则使f(x)<$\frac{1}{4}$成立的x的取值集合是
(kπ-$\frac{7π}{12},kπ-\frac{π}{12}$),k∈Z.

查看答案和解析>>

同步练习册答案