·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\frac{{a}^{2}}{c}$=4£¬$\frac{{c}^{2}}{{a}^{2}}$+$\frac{3}{4}$=1£¬b2=a2-c2£¬ÁªÁ¢½â³ö¿ÉµÃÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÓÉ£¨1£©¿ÉµÃ£ºA£¨-2£¬0£©£¬F£¨1£¬0£©£¬ÉèP£¨4£¬m£©£¬Q£¨4£¬n£©£¬ÓÉPF¡ÍQF£¬¿ÉµÃmn=-9£¬Ö±ÏßAPµÄ·½³Ì£º
y=$\frac{m}{6}$£¨x+2£©£¬Ö±ÏßAQµÄ·½³Ì£ºy=$\frac{n}{6}$£¨x+2£©£®·Ö±ðÓëÌâÒâ·½³ÌÁªÁ¢¿ÉµÃMÓëNµÄ×ø±ê£®¶ÔÖ±ÏßMNµÄбÂÊ·ÖÀàÌÖÂÛ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\frac{{a}^{2}}{c}$=4£¬$\frac{{c}^{2}}{{a}^{2}}$+$\frac{3}{4}$=1£¬b2=a2-c2£¬
ÁªÁ¢½âµÃc=1£¬a=2£¬b2=3£¬
¿ÉµÃÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£®
£¨2£©ÓÉ£¨1£©¿ÉµÃ£ºA£¨-2£¬0£©£¬F£¨1£¬0£©£¬ÉèP£¨4£¬m£©£¬Q£¨4£¬n£©£¬
¡ßPF¡ÍQF£¬¡àmn=-9£¬Ö±ÏßAPµÄ·½³Ì£ºy=$\frac{m}{6}$£¨x+2£©£¬Ö±ÏßAQµÄ·½³Ì£ºy=$\frac{n}{6}$£¨x+2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=\frac{m}{6}£¨x+2£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬¿ÉµÃM$£¨\frac{54-2{m}^{2}}{27+{m}^{2}}£¬\frac{18m}{27+{m}^{2}}£©$£®
ͬÀí¿ÉµÃ£ºN$£¨\frac{54-2{n}^{2}}{27+{n}^{2}}£¬\frac{18n}{27+{n}^{2}}£©$£®
ÈôÖ±ÏßMNµÄбÂʲ»´æÔÚ£¬Ôò$\frac{18m}{27+{m}^{2}}$+$\frac{18n}{27+{n}^{2}}$=0£¬Óëmn=-9£¼
ÁªÁ¢½âµÃm=3£¬n=-3£®»òm=-3£¬n=3£®
Ö±ÏßMNµÄ·½³ÌΪ£ºx=1£¬´ËʱֱÏß¾¹ý¶¨µã£¨1£¬0£©£®
ÈôÖ±ÏßMNµÄбÂÊ´æÔÚ£¬ÔòkMF=$\frac{\frac{18m}{27+{m}^{2}}}{\frac{54-2{m}^{2}}{27+{m}^{2}}-1}$=$\frac{6m}{9-{m}^{2}}$£¬kNF=$\frac{\frac{18n}{27+{n}^{2}}}{\frac{54-2{n}^{2}}{27+{n}^{2}}-1}$=$\frac{6n}{9-{n}^{2}}$=kNF£¬
¡ßmn=-9£¬¡àm=-$\frac{9}{n}$£¬¡àkMF=$\frac{6¡Á£¨-\frac{9}{n}£©}{9-£¨-\frac{9}{n}£©^{2}}$=$\frac{6n}{9-{n}^{2}}$=kNF£¬¡àÖ±ÏßMN¹ýÒ»¶¨µãF£¨1£¬0£©£¬
×ÛÉϿɵãºÖ±ÏßMN¹ýÒ»¶¨µãF£¨1£¬0£©£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌ⡢бÂʼÆË㹫ʽ¡¢Ö±Ïß¾¹ý¶¨µãÎÊÌ⣬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¹²Ïߣ¬ÏòÁ¿$\overrightarrow{b}$Óë$\overrightarrow{c}$¹²Ïߣ¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{c}$¹²Ïß | |
| B£® | ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$²»¹²Ïߣ¬ÏòÁ¿$\overrightarrow{b}$Óë$\overrightarrow{c}$²»¹²Ïߣ¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{c}$²»¹²Ïß | |
| C£® | ÏòÁ¿$\overrightarrow{AB}$Óë$\overrightarrow{CD}$Êǹ²ÏßÏòÁ¿£¬ÔòA£¬B£¬C£¬DËĵãÒ»¶¨¹²Ïß | |
| D£® | ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$²»¹²Ïߣ¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¶¼ÊÇ·ÇÁãÏòÁ¿ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¹²Ïß | B£® | ¹²Ãæ | C£® | ²»¹²Ãæ | D£® | ÎÞ·¨È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©ÔÚ$£¨\frac{¦Ð}{4}£¬\frac{3¦Ð}{4}£©$µ¥µ÷µÝÔö | B£® | f£¨x£©ÔÚ$£¨\frac{¦Ð}{4}£¬\frac{3¦Ð}{4}£©$µ¥µ÷µÝ¼õ | ||
| C£® | f£¨x£©ÔÚ$£¨\frac{¦Ð}{6}£¬\frac{¦Ð}{3}£©$µ¥µ÷µÝÔö | D£® | f£¨x£©ÔÚ$£¨\frac{¦Ð}{6}£¬\frac{¦Ð}{3}£©$µ¥µ÷µÝ¼õ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com