19£®ÉèF£¨c£¬0£©£¬A£¨-a£¬0£©·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãºÍ¶¥µã£¬ËüµÄÓÒ×¼ÏßΪl£ºx=4£¬ÇÒÍÖÔ²C¹ýµã£¨c£¬$\frac{\sqrt{3}b}{2}$£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèP£¬QÊÇÓÒ×¼ÏßlÉϵÄÁ½¸ö¶¯µã£¬ÇÒPF¡ÍQF£¬Ö±ÏßAP£¬AQ·Ö±ðÓëÍÖÔ²½»ÓÚµãM£¬NÁ½µã£¬ÇóÖ¤£ºÖ±ÏßMN¹ýÒ»¶¨µã£¬²¢Çó³ö´Ë¶¨µãµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\frac{{a}^{2}}{c}$=4£¬$\frac{{c}^{2}}{{a}^{2}}$+$\frac{3}{4}$=1£¬b2=a2-c2£¬ÁªÁ¢½â³ö¿ÉµÃÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÓÉ£¨1£©¿ÉµÃ£ºA£¨-2£¬0£©£¬F£¨1£¬0£©£¬ÉèP£¨4£¬m£©£¬Q£¨4£¬n£©£¬ÓÉPF¡ÍQF£¬¿ÉµÃmn=-9£¬Ö±ÏßAPµÄ·½³Ì£º
y=$\frac{m}{6}$£¨x+2£©£¬Ö±ÏßAQµÄ·½³Ì£ºy=$\frac{n}{6}$£¨x+2£©£®·Ö±ðÓëÌâÒâ·½³ÌÁªÁ¢¿ÉµÃMÓëNµÄ×ø±ê£®¶ÔÖ±ÏßMNµÄбÂÊ·ÖÀàÌÖÂÛ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º$\frac{{a}^{2}}{c}$=4£¬$\frac{{c}^{2}}{{a}^{2}}$+$\frac{3}{4}$=1£¬b2=a2-c2£¬
ÁªÁ¢½âµÃc=1£¬a=2£¬b2=3£¬
¿ÉµÃÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£®
£¨2£©ÓÉ£¨1£©¿ÉµÃ£ºA£¨-2£¬0£©£¬F£¨1£¬0£©£¬ÉèP£¨4£¬m£©£¬Q£¨4£¬n£©£¬
¡ßPF¡ÍQF£¬¡àmn=-9£¬Ö±ÏßAPµÄ·½³Ì£ºy=$\frac{m}{6}$£¨x+2£©£¬Ö±ÏßAQµÄ·½³Ì£ºy=$\frac{n}{6}$£¨x+2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=\frac{m}{6}£¨x+2£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬¿ÉµÃM$£¨\frac{54-2{m}^{2}}{27+{m}^{2}}£¬\frac{18m}{27+{m}^{2}}£©$£®
ͬÀí¿ÉµÃ£ºN$£¨\frac{54-2{n}^{2}}{27+{n}^{2}}£¬\frac{18n}{27+{n}^{2}}£©$£®
ÈôÖ±ÏßMNµÄбÂʲ»´æÔÚ£¬Ôò$\frac{18m}{27+{m}^{2}}$+$\frac{18n}{27+{n}^{2}}$=0£¬Óëmn=-9£¼
ÁªÁ¢½âµÃm=3£¬n=-3£®»òm=-3£¬n=3£®
Ö±ÏßMNµÄ·½³ÌΪ£ºx=1£¬´ËʱֱÏß¾­¹ý¶¨µã£¨1£¬0£©£®
ÈôÖ±ÏßMNµÄбÂÊ´æÔÚ£¬ÔòkMF=$\frac{\frac{18m}{27+{m}^{2}}}{\frac{54-2{m}^{2}}{27+{m}^{2}}-1}$=$\frac{6m}{9-{m}^{2}}$£¬kNF=$\frac{\frac{18n}{27+{n}^{2}}}{\frac{54-2{n}^{2}}{27+{n}^{2}}-1}$=$\frac{6n}{9-{n}^{2}}$=kNF£¬
¡ßmn=-9£¬¡àm=-$\frac{9}{n}$£¬¡àkMF=$\frac{6¡Á£¨-\frac{9}{n}£©}{9-£¨-\frac{9}{n}£©^{2}}$=$\frac{6n}{9-{n}^{2}}$=kNF£¬¡àÖ±ÏßMN¹ýÒ»¶¨µãF£¨1£¬0£©£¬
×ÛÉϿɵãºÖ±ÏßMN¹ýÒ»¶¨µãF£¨1£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌ⡢бÂʼÆË㹫ʽ¡¢Ö±Ïß¾­¹ý¶¨µãÎÊÌ⣬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªº¯Êý$f£¨x£©=x+\frac{a}{x}£¨a¡Ê$R£©£¬g£¨x£©=lnx£¬Èô¹ØÓÚxµÄ·½³Ì$\frac{g£¨x£©}{x^2}=f£¨x£©-2e$£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©Ö»ÓÐÒ»¸öʵÊý¸ù£¬Ôòa=${e^2}+\frac{1}{e}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¹²Ïߣ¬ÏòÁ¿$\overrightarrow{b}$Óë$\overrightarrow{c}$¹²Ïߣ¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{c}$¹²Ïß
B£®ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$²»¹²Ïߣ¬ÏòÁ¿$\overrightarrow{b}$Óë$\overrightarrow{c}$²»¹²Ïߣ¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{c}$²»¹²Ïß
C£®ÏòÁ¿$\overrightarrow{AB}$Óë$\overrightarrow{CD}$Êǹ²ÏßÏòÁ¿£¬ÔòA£¬B£¬C£¬DËĵãÒ»¶¨¹²Ïß
D£®ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$²»¹²Ïߣ¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$¶¼ÊÇ·ÇÁãÏòÁ¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬$\frac{{b}^{2}-{a}^{2}-{c}^{2}}{ac}$=$\frac{cos£¨A+C£©}{sinAcosA}$£¬ÇÒ$\frac{¦Ð}{4}£¼B£¼\frac{¦Ð}{2}$£®
£¨1£©Çó½ÇA£»
£¨2£©Èôa=2£¬µ±sinB+cos£¨$\frac{7¦Ð}{12}-C$£©È¡µÃ×î´óֵʱ£¬ÇóBºÍb£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Éè$f£¨x£©=m£¨{x+m}£©£¨{x-2m-1}£©£¬g£¨x£©=x-2+ln\frac{x}{2}$£¬Èô?x¡ÊR£¨x£©£¼0¡°Óë¡°g£¨x£©£¼0¡°ÖÐÖÁÉÙÓÐÒ»¸ö³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨-2£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªA£¨0£¬-1£¬2£©£¬B£¨0£¬2£¬-4£©£¬C£¨1£¬2£¬-1£©£¬ÔòA£¬B£¬CÈýµã£¨¡¡¡¡£©
A£®¹²ÏßB£®¹²ÃæC£®²»¹²ÃæD£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®É躯Êý$f£¨x£©=sin£¨¦Øx+\frac{¦Ð}{6}£©-2{sin^2}\frac{¦Ø}{2}x+1£¨¦Ø£¾0£©$£¬Ö±Ïß$y=-\sqrt{3}$Ó뺯Êýf£¨x£©Í¼ÏóÏàÁÚÁ½½»µãµÄ¾àÀëΪ¦Ð£®
£¨1£©Ç󦨵ÄÖµ£®
£¨2£©Çóf£¨x£©ÔÚ$[-\frac{¦Ð}{4}£¬\frac{¦Ð}{4}]$ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦µ£©+cos£¨¦Øx+¦µ£©£¨¦Ø£¾0£¬|¦µ|£¼$\frac{¦Ð}{2}$µÄ×îСÕýÖÜÆÚΪ¦Ð£¬ÇÒ¶Ô?x¡ÊR£¬f£¨x£©¡Üf£¨0£©£¬Ôò£¨¡¡¡¡£©
A£®f£¨x£©ÔÚ$£¨\frac{¦Ð}{4}£¬\frac{3¦Ð}{4}£©$µ¥µ÷µÝÔöB£®f£¨x£©ÔÚ$£¨\frac{¦Ð}{4}£¬\frac{3¦Ð}{4}£©$µ¥µ÷µÝ¼õ
C£®f£¨x£©ÔÚ$£¨\frac{¦Ð}{6}£¬\frac{¦Ð}{3}£©$µ¥µ÷µÝÔöD£®f£¨x£©ÔÚ$£¨\frac{¦Ð}{6}£¬\frac{¦Ð}{3}£©$µ¥µ÷µÝ¼õ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=xlnx+ax+bÔڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßΪ3x-y-2=0£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôk¡ÊZ£¬ÇÒ¶ÔÈÎÒâx£¾1£¬¶¼ÓÐk£¼$\frac{f£¨x£©}{x-1}$³ÉÁ¢£¬ÇókµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸