精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=xlnx+ax+b在点(1,f(1))处的切线为3x-y-2=0.
(1)求函数f(x)的解析式;
(2)若k∈Z,且对任意x>1,都有k<$\frac{f(x)}{x-1}$成立,求k的最大值.

分析 (1)首先对f(x)求导,求出(1,f(1))点处的切线方程与3x-y-2=0相等即可;
(2)由题意转换为:令$g(x)=\frac{xlnx+2x-1}{x-1}$,则k<g(x)min.利用导数求出g(x)的最小值即可.

解答 解:(1)f(x)的定义域为(0,+∞),f'(x)=lnx+1+a,
∴$\left\{\begin{array}{l}f'(1)=a+1=3\\ f(1)=a+b=1\end{array}\right.$⇒$\left\{\begin{array}{l}a=2\\ b=-1\end{array}\right.$
∴f(x)=xlnx+2x-1.
(2)$k<\frac{f(x)}{x-1}$可化为$k<\frac{xlnx+2x-1}{x-1}$,
令$g(x)=\frac{xlnx+2x-1}{x-1}$,则k<g(x)min,$g'(x)=\frac{x-2-lnx}{{{{(x-1)}^2}}}$,x∈(1,+∞).
令h(x)=x-2-lnx,
则$h'(x)=1-\frac{1}{x}=\frac{x-1}{x}>0$,
∴h(x)在(1,+∞)上为增函数.
又h(3)=1-ln3<0,h(4)=2-ln4>0,
故存在唯一的x0∈(3,4)使得h(x0)=0,即x0-2=lnx0
当x∈(1,x0)时,h(x)<0,∴g'(x)<0,∴g(x)在(1,x0)上为减函数;
当x∈(x0,+∞)时,h(x)>0,∴g'(x)>0,∴g(x)在(x0,+∞)上为增函数.
∴$g{(x)_{min}}=g({x_0})=\frac{{{x_0}ln{x_0}+2{x_0}-1}}{{{x_0}-1}}=\frac{{{x_0}({x_0}-2)+2{x_0}-1}}{{{x_0}-1}}={x_0}+1$,
∴k<x0+1.
∵x0∈(3,4),
∴x0+1∈(4,5),∵k∈Z,
∴k的最大值为4.

点评 本题主要考查了函数单调性,函数的切线方程求法,以及构造新函数比较大小,属中等难度题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设F(c,0),A(-a,0)分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点和顶点,它的右准线为l:x=4,且椭圆C过点(c,$\frac{\sqrt{3}b}{2}$).
(1)求椭圆C的方程;
(2)设P,Q是右准线l上的两个动点,且PF⊥QF,直线AP,AQ分别与椭圆交于点M,N两点,求证:直线MN过一定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.等差数列{an}中,a1>0,S9=S12,则前10或11项的和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$在[0,$\frac{π}{2}$]的值域是(  )
A.[-1,1]B.[$\frac{1}{2}$,1]C.[-$\frac{1}{2}$,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:函数y=ax在R上单调递减.命题q:函数y=$\sqrt{a{x^2}-6ax+8+a}$的定义域为R,若命题p∨(?q)为假命题,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=cosx•cos(x-$\frac{π}{3}$),则使f(x)<$\frac{1}{4}$成立的x的取值集合是
(kπ-$\frac{7π}{12},kπ-\frac{π}{12}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,已知AB=1,BC=2,CD=4,AB∥CD,BC⊥CD,平面PAB⊥平面ABCD,PA⊥AB,
(1)求证:BD⊥平面PAC
(2)已知点F在棱PD上,且PB∥平面FAC,若PA=5,求三棱锥D-FAC的体积VD-FAC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙同时各解同一道几何题,求乙比甲先解答完的概率;
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,求甲、乙两名女生至少有一人被选中的概率.
附表及公式:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k20722.7063.8415.0246.6357.87910.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点的极坐标为(2,$\frac{5π}{6}$),其直角坐标为$(-\sqrt{3},1)$.

查看答案和解析>>

同步练习册答案