| A. | f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递增 | B. | f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递减 | ||
| C. | f(x)在$(\frac{π}{6},\frac{π}{3})$单调递增 | D. | f(x)在$(\frac{π}{6},\frac{π}{3})$单调递减 |
分析 由题意,化简可得f(x)=$\sqrt{2}$sin(ωx+Φ+$\frac{π}{4}$),利用周期公式可求ω.由f(x)≤f(0)恒成立,结合φ的范围,可求φ,求得其单调递减区间,比较各个选项即可得解.
解答 解:由f(x)=sin(ωx+Φ)+cos(ωx+Φ)=$\sqrt{2}$sin(ωx+Φ+$\frac{π}{4}$),
由最小正周期为π,可得:$\frac{2π}{ω}$=π,解得:ω=2,可得:f(x)=$\sqrt{2}$sin(2x+Φ+$\frac{π}{4}$),
因为f(x)≤f(0)恒成立,
所以f(x) max=f(0),即Φ+$\frac{π}{4}$=$\frac{π}{2}$+2kπ(k∈Z),
由|φ|<$\frac{π}{2}$,得φ=$\frac{π}{4}$,
故f(x)=$\sqrt{2}$sin(2x+$\frac{π}{2}$)=$\sqrt{2}$cos2x.
令2kπ≤2x≤2kπ+π,k∈Z,解得:kπ≤x≤kπ+$\frac{π}{2}$,k∈Z,故函数f(x)的单调递减区间为:[kπ,kπ+$\frac{π}{2}$],k∈Z,
令k=0,函数f(x)的单调递减区间为:[0,$\frac{π}{2}$],
由于$(\frac{π}{6},\frac{π}{3})$?[0,$\frac{π}{2}$],
故f(x)在$(\frac{π}{6},\frac{π}{3})$单调递减.
故选:D.
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质的应用,考查了数形结合思想的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [$\frac{1}{2}$,1] | C. | [-$\frac{1}{2}$,1] | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 几何题 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com