精英家教网 > 高中数学 > 题目详情
16.“m=2”是“函数f(x)=xm为实数集R上的偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:当m=2时,函数f(x)=x2为偶函数,满足条件.
当m=4时,函数f(x)=x4为偶函数,但m=2不成立,
故“m=2”是“函数f(x)=xm为实数集R上的偶函数”的充分不必要条件,
故选:A.

点评 本题主要考查充分条件和必要条件的判断,根据函数奇偶性的定义进行判断是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=x+\frac{a}{x}+2$的值域为(-∞,0]∪[4,+∞),则a的值是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,$\frac{{b}^{2}-{a}^{2}-{c}^{2}}{ac}$=$\frac{cos(A+C)}{sinAcosA}$,且$\frac{π}{4}<B<\frac{π}{2}$.
(1)求角A;
(2)若a=2,当sinB+cos($\frac{7π}{12}-C$)取得最大值时,求B和b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A(0,-1,2),B(0,2,-4),C(1,2,-1),则A,B,C三点(  )
A.共线B.共面C.不共面D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数$f(x)=sin(ωx+\frac{π}{6})-2{sin^2}\frac{ω}{2}x+1(ω>0)$,直线$y=-\sqrt{3}$与函数f(x)图象相邻两交点的距离为π.
(1)求ω的值.
(2)求f(x)在$[-\frac{π}{4},\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$的图象向右平移$\frac{π}{6}$个单位后关于原点对称,则函数f(x)=sin(2x+φ)在[0,$\frac{π}{4}$]上的最小值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(ωx+Φ)+cos(ωx+Φ)(ω>0,|Φ|<$\frac{π}{2}$的最小正周期为π,且对?x∈R,f(x)≤f(0),则(  )
A.f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递增B.f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递减
C.f(x)在$(\frac{π}{6},\frac{π}{3})$单调递增D.f(x)在$(\frac{π}{6},\frac{π}{3})$单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=$\frac{x}{ax+b}$(a,b为常数)满足:点(2,1)在f(x)的图象上,方程f(x)=x有唯一解.
(1)求f(x)的解析式;
(2)判断f(x)在(-2,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-2n.
(1)设bn=an+2,求证:数列{bn}是等比数列,并求出{an}的通项公式.
(2)求数列{nan}的前n项和.

查看答案和解析>>

同步练习册答案