分析 (1)由已知及余弦定理可得-2cosB=$\frac{-cosB}{sinAcosA}$,结合cosB≠0,可得sin2A=1,利用正弦函数的图象可得A的值.
(2)由(1)可得B+C=$\frac{3π}{4}$,利用三角函数恒等变换的应用化简可得sinB+cos($\frac{7π}{12}-C$)=$\sqrt{3}$sin(B+$\frac{π}{6}$),利用B的范围可求$\frac{5π}{12}$<B+$\frac{π}{6}$<$\frac{2π}{3}$,利用正弦函数的性质可求当B=$\frac{π}{3}$时,sinB+cos($\frac{7π}{12}-C$)取得最大值,进而利用正弦定理可求b的值.
解答 (本题满分为12分)
解:(1)∵由余弦定理可得:$\frac{{b}^{2}-{a}^{2}-{c}^{2}}{ac}$=$\frac{-2accosB}{ac}$=-2cosB,
∴-2cosB=$\frac{cos(A+C)}{sinAcosA}$=$\frac{-cosB}{sinAcosA}$,
∵$\frac{π}{4}<B<\frac{π}{2}$,可得:cosB≠0,
∴sin2A=1,
∴A=$\frac{π}{4}$,…6分
(2)由(1)可得B+C=$\frac{3π}{4}$,
∵sinB+cos($\frac{7π}{12}-C$)=sinB+cos(B-$\frac{π}{6}$)=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵$\frac{π}{4}<B<\frac{π}{2}$,可得:$\frac{5π}{12}$<B+$\frac{π}{6}$<$\frac{2π}{3}$,
∴当B+$\frac{π}{6}$=$\frac{π}{2}$,即B=$\frac{π}{3}$时,sinB+cos($\frac{7π}{12}-C$)取得最大值,…10分
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{6}$,
∴B=$\frac{π}{3}$,b=$\sqrt{6}$…12分
点评 本题主要考查了余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [$\frac{1}{2}$,1] | C. | [-$\frac{1}{2}$,1] | D. | [0,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com