精英家教网 > 高中数学 > 题目详情
下列代数式(其中k∈N*)能被9整除的是(  )
A.6+6·7kB.2+7k-1
C.2(2+7k+1)D.3(2+7k)
D
(1)当k=1时,A答案值为48,B答案值为3,C答案值为102,D答案值为27.
显然只有3(2+7k)能被9整除.
(2)假设当k=n(n∈N*)时,命题成立,
即3(2+7n)能被9整除,
那么3(2+7n+1)=21(2+7n)-36.
这就是说,当k=n+1时,命题也成立.
由(1)(2)可知,命题对任何k∈N*都成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an).求证:
(1)函数f(x)在区间(0,1)是增函数;
(2)an<an+1<1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明对n∈N都有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明:++…+= (n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,;当时,
(Ⅰ)求
(Ⅱ)猜想,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(1)若函数,且时,猜想的表达式           
(2)用反证法证明命题"若能被3整除,那么中至少有一个能被3整除"时,假设应为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明等式时,第一步验证时,左边应取的项是
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在用数学归纳法证明时,则当时左端应在的基础上加上的项是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知数列中,,, 为该数列的前项和,且.
(1)求数列的通项公式;
(2)若不等式对一切正整数都成立,求正整数的最大值,并证明结论.

查看答案和解析>>

同步练习册答案