精英家教网 > 高中数学 > 题目详情
11.已知等比数列的前n项和为Sn,且a1+a3=$\frac{5}{2},{a_2}+{a_4}=\frac{5}{4}$,则$\frac{S_n}{a_n}$=2n-1.

分析 利用等比数列的通项公式及其前n项和公式即可得出.

解答 解:设等比数列{an}的公比为q,
∵a1+a3=$\frac{5}{2},{a_2}+{a_4}=\frac{5}{4}$,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}{q}^{2}=\frac{5}{2}}\\{{a}_{1}q+{a}_{1}{q}^{3}=\frac{5}{4}}\end{array}\right.$,
解得a1=2,q=$\frac{1}{2}$,
∴Sn=$\frac{2(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=$4(1-\frac{1}{{2}^{n}})$,
an=2×$(\frac{1}{2})^{n-1}$,
则$\frac{S_n}{a_n}$=2n-1.
故答案为:2n-1.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.用数学归纳法证明:1×2+2×3+3×4+…+n×(n+1)=$\frac{n(n+1)(n+2)}{3}(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知四棱锥P-ABCD的底面ABCD为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中点.
(1)求异面直线AC与PB所成的角的余弦值;
(2)求直线BC与平面ACM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)证明:当x>1时,f(x)<x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设I=R,集合A={x|x2-2x<0},B={x|x2-4x+3≤0},求
(1)A∩B;
(2)A∪B;
(3)(∁IA)∪(∁IB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x-alnx,$g(x)=-\frac{1+a}{x}$(a∈R).
(1)若a=1,求函数f(x)在(2,f(2))处的切线方程;
(2)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(3)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程x3-3x+c=0恰有两个实数根,则c=(  )
A.-2或2B.-9或3C.-1或1D.-3或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简计算
$(1){\;}_{\;}4{a^{\frac{2}{3}}}{b^{-\frac{1}{3}}}÷(-\frac{2}{3}{a^{-\frac{1}{3}}}{b^{-\frac{1}{3}}})$
$(2){\;}_{\;}{(\frac{2}{3})^{-2}}+{(1-\sqrt{2})^0}-{(3\frac{3}{8})^{\frac{2}{3}}}+\sqrt{{{(3-π)}^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.从4月1日开始,有一新款服装投入某商场销售,4月1日该款销售出10件,第二天销售出25件,第三天销售出40件,以后,每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天销售的件数分别递减10件.
(1)记该款服装四月份日销售量与销售天数n的关系为an,求an
(2)求四月份的总销售量.

查看答案和解析>>

同步练习册答案