精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)证明:当x>1时,f(x)<x-1.

分析 (Ⅰ)求函数f(x)的导数,利用导函数大于0,求解不等式得到函数的单调递增区间;
(Ⅱ)构造函数,利用导数判断函数的单调性,然后证明当x>1时,f(x)<x-1.

解答 (I)解:$f'(x)=\frac{1}{x}-x+1=\frac{{-{x^2}+x+1}}{x}$,x∈(0,+∞).
由f′(x)>0得$\left\{\begin{array}{l}x>0\\-{x^2}+x+1>0\end{array}\right.$解得$0<x<\frac{{1+\sqrt{5}}}{2}$.
故f(x)的单调递增区间是$({0,\frac{{1+\sqrt{5}}}{2}})$.
(II)证明:令F(x)=f(x)-(x-1),x∈(0,+∞).
则有$F'(x)=\frac{{1-{x^2}}}{x}$.当x∈(1,+∞)时,F′(x)<0,
所以F(x)在[1,+∞)上单调递减,
故当x>1时,F(x)<F(1)=0,
即当x>1时,f(x)<x-1.

点评 本题考查函数的导数的应用,函数的单调性与对数的关系,不等式的证明的方法,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若对任意x∈R,$\frac{x}{{x}^{2}+2x+2}$≤a,则实数a的取值范围是a≥$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\vec a=({-3,2}),\vec b=({-1,0})$,向量λ$\vec a+\vec b$与$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则实数λ的值为(  )
A.$\frac{1}{5}$B.$-\frac{1}{5}$C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是(  )
A.CC1与B1E是异面直线B.AC⊥平面ABB1A1
C.A1C1∥平面AB1ED.AE,B1C1为异面直线,且AE⊥B1C1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,a,b,c分别为A,B,C所对的边,且(a+c)(a-c)=b(b+c),则角A=(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式$\frac{1}{x}$<2和|x|>$\frac{1}{3}$同时成立,则x的取值范围是(  )
A.-$\frac{1}{2}$<x<$\frac{1}{3}$B.x>$\frac{1}{2}$或x<-$\frac{1}{3}$C.x>$\frac{1}{2}$或x<$\frac{1}{3}$D.x>$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列的前n项和为Sn,且a1+a3=$\frac{5}{2},{a_2}+{a_4}=\frac{5}{4}$,则$\frac{S_n}{a_n}$=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.以下命题正确的个数是(  )
①命题“?x∈R,sinx>0”的否定是“?x∈R,sinx≤0”.
②命题“若x2+x-12=0,则x=4”的逆否命题为“若x≠4,则x2+x-12≠0”.
③若p∧q为假命题,则p、q均为假命题.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.椭圆$\frac{{x}^{2}}{{m}^{2}}+{y}^{2}$=1(m>1)与双曲线$\frac{{x}^{2}}{{n}^{2}}-{y}^{2}=1$(n>0)有公共焦点F1、F2,P是它们的一个交点,证明:F1P⊥F2P.

查看答案和解析>>

同步练习册答案