精英家教网 > 高中数学 > 题目详情
9.若对任意x∈R,$\frac{x}{{x}^{2}+2x+2}$≤a,则实数a的取值范围是a≥$\frac{\sqrt{2}-1}{2}$.

分析 对任意x∈R,$\frac{x}{{x}^{2}+2x+2}$≤a,可得ax2+(2a-1)x+2a≥0分类讨论,分离参数,利用判别式,即可求出实数a的取值范围.

解答 解:∵对任意x∈R,$\frac{x}{{x}^{2}+2x+2}$≤a,
∴ax2+(2a-1)x+2a≥0
a=0时,不成立;
a≠0时,$\left\{\begin{array}{l}{a>0}\\{(2a-1)^{2}-8{a}^{2}≤0}\end{array}\right.$
故答案为:a≥$\frac{\sqrt{2}-1}{2}$.

点评 本题考查不等式(函数)恒成立问题,考查求实数a的取值范围,正确分离参数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设实数a使得不等式|x-1|+|x-3|≥a2,对任意实数x恒成立,则满足条件的实数a的范围是[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.画出下列函数图象:
(1)y=22-x
(2)y=22-x-2
(3)y=|22-x一2|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.正项等比数列{an}中,前n项和为Sn,若S4=30,a3+a5=40,则数列{an}的前9项的和为1022.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等比数列{an}中,a2=3,a5=81.
(1)求a1与公比q;
(2)求数列{an}的通项公式an
(3)设bn=log3an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A,B={x|0≤x-1<8},C={x∈R|x<a或x>a+1}.
(1)求∁RA∩B
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用数学归纳法证明:1×2+2×3+3×4+…+n×(n+1)=$\frac{n(n+1)(n+2)}{3}(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\sqrt{3}$sinωx+cosωx-1(ω>0),且满足相邻两个最大值间的距离为π;
(1)求ω
(2)若y=f(x)的图象向右平移a(a>0)个单位,图象再向上移动一个单位得到y=g(x)的图象,且y=g(x)为奇函数,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)证明:当x>1时,f(x)<x-1.

查看答案和解析>>

同步练习册答案