精英家教网 > 高中数学 > 题目详情
11.已知θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$.
(1)求sin2θ的值;        
(2)求sin(θ+$\frac{π}{12}$)的值.

分析 (1)利用两角和与差的正弦函数公式和二倍角公式进行解答;
(2)将所求的代数式转化为sin(t+$\frac{π}{3}$)的形式,然后求值.

解答 解:(1)∵sinθcos$\frac{π}{4}$-cosθsin$\frac{π}{4}$=$\frac{\sqrt{5}}{5}$,
∴sinθ-cosθ=$\frac{\sqrt{10}}{5}$.
∴(sinθ-cosθ)2=$\frac{10}{25}$,
∴1-sin2θ=$\frac{2}{5}$,
∴sin2θ=$\frac{3}{5}$.
(2)令θ-$\frac{π}{4}$=t∈($\frac{π}{2}$,π),
∴sint=$\frac{\sqrt{5}}{5}$,cost=-$\frac{2\sqrt{5}}{5}$,
∴sin(θ+$\frac{π}{12}$)=sin(t+$\frac{π}{4}$+$\frac{π}{12}$)=sin(t+$\frac{π}{3}$)=sintcos$\frac{π}{3}$+costsin$\frac{π}{3}$=$\frac{\sqrt{5}-2\sqrt{15}}{10}$.

点评 本题考查了两角和与差的正弦函数,二倍角公式,属于基础题,熟记公式即可解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.做抛掷两颗骰子的试验:用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点数.
(1)写出试验的基本事件;
(2)求事件“出现点数之和大于8”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某港口水的深度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:
t(时)03691215182124
y(米)10.013.09.97.010.013.010.17.010.0
经长期观察,y=f(t)的曲线可以近似的看成函数y=Asinωt+b(A>0,ω>0)的图象,根据以上数据,可得函数y=f(t)的近似表达式为$y=3sin\frac{π}{6}t+10$,0≤t≤24..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$cos(θ-\frac{π}{2})=\frac{4}{5}$,且sinθ-cosθ>1,则sin(2θ-2π)=(  )
A.$-\frac{24}{25}$B.$-\frac{12}{25}$C.$-\frac{4}{5}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线y2=2px(p>0)的焦点F与双曲线$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的一个焦点重合,直线y=x-4与抛物线交于A,B两点,则|AB|等于(  )
A.28B.32C.20D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$sin(π-α)=\sqrt{2}cos(\frac{3π}{2}+β)$和$\sqrt{3}cos(-α)=-\sqrt{2}cos(π-β)$,0<α<π,0<β<π,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=x,b=2,B=60°,如果解此三角形有且只有两个解,则x的取值范围是$({2,\frac{{4\sqrt{3}}}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如图:
分组频数频率
[10,15)mp
[15,20)24n
[20,25)40.1
[25,30)20.05
合计M1
(1)若已知M=40,求出表中m、n、p中及图中a的值;
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[10,15)内的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数     N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形数      N(n,4)=n2
五边形数      $N({n,5})=\frac{3}{2}{n^2}-\frac{1}{2}n$
六边形数      N(n,6)=2n2-n

可以推测N(n,k)的表达式,由此计算 N(20,32)=5720.

查看答案和解析>>

同步练习册答案