精英家教网 > 高中数学 > 题目详情
表示自然数的所有因数中最大的那个奇数,例如:9的因数有1,3,9,,10的因数有1,2,5,10,,那么               .
85,(4n-1).
此题答案为:85,(4n-1)
据题中对g(n)的定义,判断出g(n)=g(2n),且若n为奇数则g(n)=n,利用等差数列的前n项和公式及逐差累加的方法及等比数列的前n项和公式求出g(1)+g(2)+g(3)+…+g(2n-1),令n=4求出g(1)+g(2)+g(3)+…+g(15).
解:由g(n)的定义易知g(n)=g(2n),且若n为奇数则g(n)=n
令f(n)=g(1)+g(2)+g(3)+…g(2n-1)
则f(n+1)=g(1)+g(2)+g(3)+…g(2n+1-1)=1+3+…+(2n+1-1)+g(2)+g(4)+…+g(2n+1-2)
=2n[1+(2n+1-1)]/2+g(1)+g(2)+…+g(2n+1-2)=4n+f(n)
即f(n+1)-f(n)=4n
分别取n为1,2,…,n并累加得f(n+1)-f(1)=4+42+…+4n==(4n-1)
又f(1)=g(1)=1,所以f(n+1)=(4n-1)+1
所以f(n)=g(1)+g(2)+g(3)+…g(2n-1)=(4n-1-1)+1
令n=4得
g(1)+g(2)+g(3)+…+g(15)= (43-1)+1=85
故答案为85,(4n-1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知是定义在R上的且以2为周期的偶函数,当时,,如果直线与曲线恰有两个不同的交点,则实数的值为    (   )
A.B.
C.0D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)试判断上的单调性;
(2)当时,求证:函数的值域的长度大于(闭区间[mn]的长度定义为nm).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

客车从甲地以60km/h的速度行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度行驶1小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间t之间的关系图象中,正确的是

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某沙漠地区的某时段气温与时间的函数关系是
则该沙漠地区在该时段的最大温差是(   ).
A.         B.                D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的定义域、值域、最小正周期;
(2)判断函数奇偶性。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是定义在区间上的偶函数,且时, (1).求函数的解析式;(2).若矩形的顶点在函数的图像上,顶点轴上,求矩形的面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是集合A到集合B的映射,如果B=,则   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数与函数的图象有公共点,且点的横坐标为
__________.

查看答案和解析>>

同步练习册答案